
medusa Documentation
Release 0.2.0

Gregory Medlock

Jul 28, 2020

Getting Started

1 Index 3

2 Indices and tables 75

Python Module Index 77

Index 79

i

ii

medusa Documentation, Release 0.2.0

Medusa is a tool for constraint-based reconstruction and analysis (COBRA) of ensembles. It builds on the cobrapy
package (https://github.com/opencobra/cobrapy) by extending most single-model functionality to efficient ensemble-
scale analysis. Additionally, Medusa provides novel functions for the analysis of ensembles.

For installation instructions and how to cite Medusa, please see README.rst.

Getting Started 1

https://github.com/opencobra/cobrapy
https://github.com/gregmedlock/Medusa/blob/development/README.rst

medusa Documentation, Release 0.2.0

2 Getting Started

CHAPTER 1

Index

Getting Started

• Why?

• Installation

1.1 Why?

1.1.1 Where do ensembles come from?

In the constraint-based reconstruction and analysis (COBRA) field, there are a variety of analyses and approaches that
have alternative optimal solutions. Examples of this come up often when analyses involve integer programming, where
variables in a problem are switched on/off to maximize or minimize an objective value. When integer programming is
applied to fill in gaps in a genome-scale metabolic model (GEM) to fulfill a function, such as production of biomass,
there are generally multiple sets of equally likely solutions to the problem (e.g. there is more than one unique set of
reactions of the same size that enable growth).

Beyond examples of analyses where multiple solutions with the exact same objective value might exist, keeping track
of multiple sub-optimal solutions might be valuable because a biologically-correct solution is almost never the exact
same as the most likely numerical solution. Instead, we can hedge our bets by maintaining an ensemble of feasible
solutions to a problem that all meet some minimum acceptable likelihood.

The primary aim of medusa is to make ensemble analyses more accessible to the COBRA field so that we can start
accounting for this uncertainty to improve our predictions and improve our reconstructions more efficiently. The
software is written and developed with usability as the top priority, secondary to performance and novelty. Thus, user
feedback is essential–please do not hesitate to provide your thoughts or ask questions via an issue on the medusa
github repository.

3

https://en.wikipedia.org/wiki/Integer_programming
https://github.com/gregmedlock/Medusa/
https://github.com/gregmedlock/Medusa/

medusa Documentation, Release 0.2.0

1.2 Installation

Stable releases of medusa are available through PyPI for Python 3 (Python 2 is not supported). To download and
install the most recent stable release, install pip and run the following at the commandline:

$ pip install medusa-cobra

You can also download and install the development version of medusa via github. To do this, clone the remote github
repository with:

$ git clone https://github.com/gregmedlock/Medusa.git

When working from a cloned repository, you will need to manually install the dependencies for medusa. First install
tools necessary for setting up the environment:

$ pip install --upgrade pip setuptools wheel

Now navigate to the directory generated by cloning (e.g. default will create a folder named “Medusa” in the location
you performed git clone), then install the package requirements:

$ pip install -r requirements.txt

then checkout the development branch:

$ git checkout development

the checkout command will make your local repository reflect the exact state of the remote repository’s development
branch. After checking out the development branch, the last step is to setup medusa for development:

$ python setup.py develop

During usage, issues may arise with optional cobrapy dependencies that are not installed by default with medusa.
For these kinds of issues, please attempt a full installation of cobrapy and consult the cobrapy installation instructions.

Examples

• Parallelized simulations

• Applying machine learning to guide ensemble curation

• Statistical testing for ensemble simulations

• Assessing ensemble performance via ROC

1.3 Parallelized simulations

In medusa, ensemble Flux Balance Analysis (FBA) can be sped up thanks to the multiprocessing Python
module. With this approach, each core (or processor) is assigned a subset of ensemble members for which to perform
FBA, speeding up the computation in proportion to the number of additional processors allocated.

Let’s load a test model to demonstrate parallel ensemble FBA. This ensemble has 1000 members, so each FBA step
will return fluxes for each reaction in one of the 1000 members.

In [1]: from medusa.flux_analysis import flux_balance
from medusa.test import create_test_ensemble
ensemble = create_test_ensemble("Staphylococcus aureus")

Next, perform the actual simulations. To parallelize, just indicate the number of cores you’d like to use with the
num_processes argument. medusa will not automatically recognize that you have additional cores available.
We’ll use the time module to keep track of how long the simulation takes given the number of cores allocated.

4 Chapter 1. Index

https://pypi.org/
https://pip.pypa.io/en/stable/installing/
https://github.com/opencobra/cobrapy/blob/devel/INSTALL.rst

medusa Documentation, Release 0.2.0

In [2]: import time

runtimes = {}
for num_processes in range(1,5):

t0 = time.time()
flux_balance.optimize_ensemble(ensemble, num_processes = num_processes)
t1 = time.time()
runtimes[num_processes] = t1-t0
print(str(num_processes) + ' processors: ' + str(t1-t0) + 's')

1 processors: 89.6445517539978s
2 processors: 45.74347114562988s
3 processors: 33.75276780128479s
4 processors: 27.72901201248169s

In [5]: import matplotlib.pylab as plt
fig,ax = plt.subplots()
plt.bar(runtimes.keys(), runtimes.values(), align = 'center', alpha = 0.6)
plt.xlabel('Number of processors')
plt.ylabel('Runtime (s)')
ax.set_xlabel('Number of processors',size=16)
ax.set_ylabel('Ensemble Flux Balance \nAnalysis runtime (s)',size=16)
ax.tick_params(axis='both', which='major', labelsize=12)
ax.tick_params(axis='both', which='minor', labelsize=12)
plt.savefig('parallel_fba.svg')

As you can see from the printed output and the plots, a couple of additional cores really speeds things up. However,
each core requires an additional copy of the ensemble for its independent simulations. This process (serialization and
deserialization) leads to diminishing returns as the number of cores is increased. We are working on improving this,
but for now, it is best to choose a modest number of cores (e.g. 2-4).

1.3. Parallelized simulations 5

medusa Documentation, Release 0.2.0

1.4 Applying machine learning to guide ensemble curation

An ensemble of models can be though of as a set of feasible hypotheses about how a system behaves. From a machine
learning perspective, these hypotheses can alternatively be viewed as samples (or observations), each of which has a
distinct set of features (i.e. the model components that vary across an ensemble) and can further generate new features
by performing simulations. An example of the analyses enabled by this view of ensembles can be found in Medlock &
Papin, where ensemble structure and ensemble simulations are used to identify reactions that are high-priority targets
for curation.

In this example, we demonstrate how ensembles of genome-scale metabolic models and machine learning can be
combined to identify reactions that might strongly influence a single prediction (flux through biomass). We will use
an ensemble for Staphylococcus aureus that contains 1000 members. The ensemble was generated through iterative
gapfilling to enable growth on single C/N media conditions using a draft reconstruction from ModelSEED.

In [1]: import medusa
from medusa.test import create_test_ensemble

ensemble = create_test_ensemble("Staphylococcus aureus")

Using the ensemble, we’ll perform flux balance analysis and return flux through the biomass reaction (which has an
ID of "bio1"). The ensemble already has the media conditions set as “complete”, meaning the boundary reactions
for all transportable metabolites are open (e.g. the lower bound of all exchange reactions is -1000).

In [2]: from medusa.flux_analysis import flux_balance
biomass_fluxes = flux_balance.optimize_ensemble(ensemble, return_flux="bio1", num_processes = 4)

The optimize_ensemble function returns a pandas DataFrame, where each column is a reaction and each row is
an ensemble member. For illustration, here are the values for the first 10 members of the ensemble:

In [3]: biomass_fluxes.head(10)

Out[3]: bio1
Staphylococcus aureus_gapfilled_518 118.238182
Staphylococcus aureus_gapfilled_860 122.523063
Staphylococcus aureus_gapfilled_900 104.905551
Staphylococcus aureus_gapfilled_434 148.353976
Staphylococcus aureus_gapfilled_343 134.100850
Staphylococcus aureus_gapfilled_706 116.982207
Staphylococcus aureus_gapfilled_175 137.352545
Staphylococcus aureus_gapfilled_85 110.488964
Staphylococcus aureus_gapfilled_345 119.439103
Staphylococcus aureus_gapfilled_161 118.237318

To get a sense for the distribution of biomass flux predictions, we can visualize them with matplotlib:

In [4]: import matplotlib.pylab as plt
fig, ax = plt.subplots()
plt.hist(biomass_fluxes['bio1'], bins = 15, color = 'black', alpha = 0.4)
ax.set_ylabel('# ensemble members')
ax.set_xlabel('Flux through biomass reaction')
plt.savefig('pre_FBA_curation.svg')
plt.show()

6 Chapter 1. Index

https://doi.org/10.1101/460071
https://doi.org/10.1101/460071

medusa Documentation, Release 0.2.0

As you can see, there is quite a bit of variation in the maximum flux through biomass! Keep in mind that this is
an ensemble of gapfilled reconstructions with no manual curation, and that none of the uptake rates are reallistically
constrained, so these predictions are unrealistically high (100 units of flux through biomass is a doubling time of 36
seconds, at least an order of magnitude faster than even the fittest E. coli grown in vitro).

Our goal now is to identify which features in the ensemble are predictive of flux through biomass. If we can identify
these reactions, then turn to the literature or perform an experiment to figure out whether they are really catalyzed by
the organism, we can greatly reduce the uncertainty in our predictions of biomass flux!

Given that we have a continous output, our problem can be addressed using regression. We will use the binary
presence/absence of each reaction in each member of the ensemble as input to a random forest regressor, implemented
in scikit-learn. Many supervised regression models will work for this analysis, but random forest is particularly easy
to understand and interpret when the input is binary (i.e. reaction presence/absence).

In [5]: import sklearn
from sklearn.ensemble import RandomForestRegressor

We reformat the data here, getting the feature states for each ensemble member and converting them to True/False,
then combine them into a single DataFrame with the biomass flux predictions for matched members.

In [6]: # Grab the features and states for the ensemble and convert to a dataframe
import pandas as pd
feature_dict = {}
for feature in ensemble.features:

feature_dict[feature.id] = feature.states
feature_frame = pd.DataFrame.from_dict(feature_dict)
convert the presence and absence of features to a boolean value
feature_frame = feature_frame.astype(bool)
extract biomass and add it to the dataframe, keeping track of the feature names
input_cols = feature_frame.columns
biomass_fluxes.index = [member_id for member_id in biomass_fluxes.index]
feature_frame['bio1'] = biomass_fluxes['bio1']

Now we actually construct and fit the random forest regressor, using 100 total trees in the forest. The oob_score_
reported here is the coefficient of determination (R2) calculated using the out-of-bag samples for each tree. As a

1.4. Applying machine learning to guide ensemble curation 7

https://scikit-learn.org/stable/

medusa Documentation, Release 0.2.0

reminder, R2 varies from 0 to 1.0, where 1.0 is a perfect fit.

In [7]: # create a regressor to predict biomass flux from reaction presence/absence
regressor = RandomForestRegressor(n_estimators=1000,oob_score=True)
fit_regressor = regressor.fit(X=feature_frame[input_cols],y=feature_frame['bio1'])
fit_regressor.oob_score_

Out[7]: 0.8684706250117109

With a reasonably-performing regressor in hand, we can inspect the important features to identify reactions that con-
tribute to uncertainty in biomass flux predictions.

In [8]: imp_frame = pd.DataFrame(fit_regressor.feature_importances_,
index=feature_frame[input_cols].columns).sort_values(
by=0,ascending=False)

imp_frame.columns = ['importance']

In [9]: imp_frame.head(10)

Out[9]: importance
rxn01640_c_upper_bound 0.129785
rxn01640_c_lower_bound 0.113434
rxn12585_c_lower_bound 0.044854
rxn12585_c_upper_bound 0.042830
rxn15617_c_lower_bound 0.039388
rxn23244_c_lower_bound 0.039336
rxn00602_c_lower_bound 0.037124
rxn15617_c_upper_bound 0.036253
rxn00602_c_upper_bound 0.032443
rxn23244_c_upper_bound 0.028802

With the list of important features in hand, the first thing we should do is turn to the literature to see if someone else
has already figured out whether these reactions are present or absent in Staphylococcus aureus. The top reaction,
rxn01640, is N-Formimino-L-glutamate iminohydrolase, which is part of the histidine utilization pathway. A quick
consultation with a review on the regulation of histidine utilization in bacteria suggests that the enzyme for this reac-
tion, encoded by the hutF gene, is widespread and conserved amongst bacteria. However, the hutF gene is part of a
second, less common pathway that branches off of the primary histidine utilization pathway. If we consult PATRIC
with a search for the *hutF* gene, we see that, although the gene is widespread, there is no predicted hutF gene in
any sequenced Staphylococcus aureus genome. Although absence of evidence is not evidence of absence, we can
be relatively confident that hutF is not encoded in the Staphylococcus aureus genome, given how well-studied this
pathogen is.

What happens if we “correct” this issue in the ensemble? Let’s inactivate the lower and upper bound for the reaction
in all the members, then perform flux balance analysis again.

In [10]: for member in ensemble.features.get_by_id('rxn01640_c_lower_bound').states:
ensemble.features.get_by_id('rxn01640_c_lower_bound').states[member] = 0
ensemble.features.get_by_id('rxn01640_c_upper_bound').states[member] = 0

biomass_fluxes_post_curation = flux_balance.optimize_ensemble(ensemble, return_flux="bio1", num_processes = 4)

In [11]: import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots()
declare specific bins for our histogram
bins=np.histogram(np.hstack((biomass_fluxes['bio1'],biomass_fluxes_post_curation['bio1'])),

bins=15)[1]
plt.hist(biomass_fluxes['bio1'],

bins,
label = 'Original',
alpha = 0.3,
color='black')

8 Chapter 1. Index

https://mmbr.asm.org/content/76/3/565
https://www.patricbrc.org/view/FeatureList/?keyword(HutF)
https://www.patricbrc.org/view/FeatureList/?keyword(HutF)

medusa Documentation, Release 0.2.0

plt.hist(biomass_fluxes_post_curation['bio1'],
bins,
label = 'Post-curation',
alpha = 0.4,
color = 'green')

plt.axvline(x=biomass_fluxes['bio1'].mean(), c = 'black', alpha = 0.6)
plt.axvline(x=biomass_fluxes_post_curation['bio1'].mean(), c = 'green')
ax.set_ylabel('# ensemble members')
ax.set_xlabel('Flux through biomass reaction')
plt.legend(loc='upper right')
plt.savefig('post_FBA_curation.svg')
plt.savefig('post_FBA_curation.png')
plt.show()

In []:

Here, we show the old distribution in gray and the new distribution in green, with vertical lines at the mean in the same
color. As you can see, by resolving the identity of the hutF-encoded enzyme, we’ve reduced the mean and range of
predicted flux through biomass. The reduction here is modest, but the process can be repeated for the other important
features we identified to continue to refine the distribution and improve the reconstruction in a rational way.

1.5 Statistical testing for ensemble simulations

In traditional COBRA simulations with a single model, most simulations result in a single quantity of interest, thus
statistical comparisons usually don’t make sense. For example, when simulating growth in two different media condi-
tions, a single model can only output a single predicted growth rate for each condition.

When accounting for uncertainty in model structure using an ensemble, these simulations generate a distribution
rather than a single value. Because we are no longer comparing two individual values, proper interpretation requires
statistical assessment of the distributions our ensemble simulations generate. In this example, we demonstrate this
concept and one statistical option for univariate comparisons (e.g. comparisons between two conditions).

1.5. Statistical testing for ensemble simulations 9

medusa Documentation, Release 0.2.0

First, let’s load an ensemble for Staphylococcus aureus and the recipe for biolog growth media, which we’ll use to
simulate growth in single carbon source media.

In [1]: import medusa
from medusa.test import create_test_ensemble

ensemble = create_test_ensemble("Staphylococcus aureus")

In [2]: import pandas as pd
biolog_base = pd.read_csv("../medusa/test/data/biolog_base_composition.csv", sep=",")
biolog_base

Out[2]: Name ID
0 H2O cpd00001_e
1 O2 cpd00007_e
2 Phosphate cpd00009_e
3 CO2 cpd00011_e
4 NH3 cpd00013_e
5 Mn2+ cpd00030_e
6 Zn2+ cpd00034_e
7 Sulfate cpd00048_e
8 Cu2+ cpd00058_e
9 Ca2+ cpd00063_e
10 H+ cpd00067_e
11 Cl- cpd00099_e
12 Co2+ cpd00149_e
13 K+ cpd00205_e
14 Mg cpd00254_e
15 Na+ cpd00971_e
16 Fe2+ cpd10515_e
17 fe3 cpd10516_e
18 Heme cpd00028_e
19 H2S2O3 cpd00268_e

In [3]: # convert the biolog base to a dictionary, which we can use to set ensemble.base_model.medium directly.
biolog_base = {'EX_'+component:1000 for component in biolog_base['ID']}

Double check that the objective is set to the biomass reaction.
For this model, 'bio1' is the id of the biomass reaction.
ensemble.base_model.objective = 'bio1'

Let’s simulate growth on two different carbon sources, D-glucose (metabolite id: cpd00027) and maltose (metabolite
id: cpd00179).

In [4]: from medusa.flux_analysis import flux_balance

carbon_sources = ["EX_cpd00027_e","EX_cpd00179_e"]

fluxes = {}
for carbon_source in carbon_sources:

biolog_base[carbon_source] = 10
ensemble.base_model.medium = biolog_base
fluxes[carbon_source] = flux_balance.optimize_ensemble(ensemble,return_flux='bio1', num_processes = 4)
biolog_base[carbon_source] = 0

Now let’s visualize the distributions of predicted flux through biomass using matplotlib. We’ll generate a histogram
for each condition, and plot the mean using a vertical line:

In [5]: import matplotlib.pylab as plt
import numpy as np

In [6]: fig, ax = plt.subplots()

10 Chapter 1. Index

medusa Documentation, Release 0.2.0

bins=np.histogram(np.hstack((fluxes[carbon_sources[0]]['bio1'],fluxes[carbon_sources[1]]['bio1'])), bins=20)[1]
plt.hist(fluxes[carbon_sources[0]]['bio1'],

bins = bins,
label=carbon_sources[0],
color = "red",
alpha = 0.5)

plt.hist(fluxes[carbon_sources[1]]['bio1'],
bins = bins,
label=carbon_sources[1],
color = "blue",
alpha = 0.5)

plt.axvline(x=fluxes[carbon_sources[0]]['bio1'].mean(), c = 'red')
plt.axvline(x=fluxes[carbon_sources[1]]['bio1'].mean(), c = 'blue')
ax.set_ylabel('# ensemble members')
ax.set_xlabel('Flux through biomass reaction')
ax.legend()
plt.show()

Visually, we can see the mean for D-glucose (cpd00027) is slightly lower than for maltose (cpd00179). To evaluate this
statistically, we’ll use the Wilcoxon signed-rank test (implemented in SciPy), which tests the null hypothesis that the
difference between paired samples (e.g. growth in D-glucose minus growth in maltose for each ensemble member) is
symmetrically distributed around zero. Here, we choose a statistical test meant for paired data because each simulation
result in one media condition has a related simulation result in the other condition which was generated using the
same ensemble member. The Wilcoxon signed-rank test is suitable for paired univariate comparisons regardless of the
distribution of data (e.g. when data are non-normally distributed, replace a paired t-test with the Wolcoxon signed-rank
test).

In [7]: from scipy.stats import wilcoxon
cond1 = fluxes[carbon_sources[0]].copy()
cond2 = fluxes[carbon_sources[1]].copy()
cond1.columns = [carbon_sources[0]]
cond2.columns = [carbon_sources[1]]
both_conditions = pd.concat([cond1,cond2], axis = 1, join_axes = [cond1.index])

1.5. Statistical testing for ensemble simulations 11

medusa Documentation, Release 0.2.0

wilcoxon(x=both_conditions[carbon_sources[0]],y=both_conditions[carbon_sources[1]])

Out[7]: WilcoxonResult(statistic=0.0, pvalue=3.3257599356529824e-165)

The p value from the test is well below any reasonable threshold, so we can claim that the predicted flux through
biomass with maltose as the sole carbon source is higher than flux through biomass with D-glucose as the sole carbon
source.

1.6 Assessing ensemble performance via ROC

This is a placeholder for an example showing how to construct an ROC curve for binary predictions made with an
ensemble.

In [1]: import medusa

User Guide

• Introduction to Medusa

• Creating an ensemble

• Performing ensemble simulations

• Input and output

• Ensemble Size and Speed Benchmarking

• Benchmarking ensemble generation

• FAQ

1.7 Introduction to Medusa

1.7.1 Loading an example ensemble and inspecting its parts

In medusa, ensembles of genome-scale metabolic network reconstructions (GENREs) are represented using the
medusa.Ensemble class. To demonstrate the functionality and attributes of this class, we’ll, load a test ensemble.
Here, we use a function that takes the E. coli core metabolism reconstruction from cobrapy and randomly removes
components to generate ensemble members.

In [1]: import medusa
from medusa.test.test_ensemble import construct_textbook_ensemble

example_ensemble = construct_textbook_ensemble()

Each Ensemble has three key attributes that specify the structure of the ensemble, which we’ll describe below. This
schematic also summarizes the structure of Ensemble and how each attribute relates to cobrapy objects:

In [2]: from IPython.display import Image
Image(filename='medusa_structure.png', width=500)

12 Chapter 1. Index

medusa Documentation, Release 0.2.0

1.7.2 Components of an ensemble: base_model

The first is the base_model, which is a cobra.Model object that represents all the possible states of an individual
member within the ensemble. Any reaction, metabolite, or gene that is only present in a subset of ensemble members
will be present in the base_model for an Ensemble. You can inspect the base_model and manipulate it just
like any other cobra.Model object.

In [3]: extracted_base_model = example_ensemble.base_model
extracted_base_model

Out[3]: <Model first_textbook at 0x7efcac754f98>

1.7.3 Components of an ensemble: members

The second attribute that each Ensemble has is a structure called members. Ensemble.members maps an
identifier for each individual GENRE in the ensemble to a medusa.Member object, which holds information about
a single member (where a “single member” is an individual GENRE within an ensemble).

Ensemble.members is represented by a custom class implemented in cobrapy called a DictList, which is essentially
a standard dictionary in python that can also be accessed using integer indices like a list (e.g. dictlist[0] returns the

1.7. Introduction to Medusa 13

https://cobrapy.readthedocs.io/en/latest/_modules/cobra/core/dictlist.html

medusa Documentation, Release 0.2.0

first element in the dictlist).

In [4]: # looks like a list when we print it
example_ensemble.members

Out[4]: [<Member first_textbook at 0x7efcac983be0>,
<Member second_textbook at 0x7efcac983ef0>]

In [5]: # Get the first member with integer indexing
first_member = example_ensemble.members[0]

Each Member within the Ensemble.members DictList has a handful of attributes as well. You can check the
ensemble that the member belongs to, the id of the member, and the network states for that member (we’ll discuss
states more below).

In [6]: print(first_member.ensemble)
print(first_member.id)
print(first_member.states)

textbook_ensemble
first_textbook
{<Feature ACONTb_lower_bound at 0x7efcac761e10>: -1000.0, <Feature ACKr_lower_bound at 0x7efcac91d128>: 0.0, <Feature ACt2r_upper_bound at 0x7efcac91db38>: 1000.0, <Feature ACt2r_lower_bound at 0x7efcac91dd68>: -1000.0, <Feature ACKr_upper_bound at 0x7efcac91d668>: 0.0, <Feature ACALDt_upper_bound at 0x7efcac91d198>: 0.0, <Feature ACALDt_lower_bound at 0x7efcac91d390>: 0.0, <Feature ACONTb_upper_bound at 0x7efcac91def0>: 1000.0}

1.7.4 Components of an ensemble: features

The states printed above are directly connected to the third attribute that Ensemble contains, Ensemble.
features, which is also a DictList object. Ensemble.features contains medusa.Feature entries, which
specify the components of the Ensemble.base_model that vary across the entire ensemble.

In [7]: example_ensemble.features

Out[7]: [<Feature ACALDt_lower_bound at 0x7efcac91d390>,
<Feature ACALDt_upper_bound at 0x7efcac91d198>,
<Feature ACKr_lower_bound at 0x7efcac91d128>,
<Feature ACKr_upper_bound at 0x7efcac91d668>,
<Feature ACONTb_lower_bound at 0x7efcac761e10>,
<Feature ACONTb_upper_bound at 0x7efcac91def0>,
<Feature ACt2r_lower_bound at 0x7efcac91dd68>,
<Feature ACt2r_upper_bound at 0x7efcac91db38>]

Here, we see that this Ensemble has 8 features. Each Feature object specifies a network component that has a
variable parameter value in at least one member of the ensemble (e.g. at least one ensemble member is missing the
reaction).

In this case, there are features for 4 reactions, ACALDt,ACKr,ACONTb, and ACt2r. There are two Feature ob-
jects for each reaction, corresponding to the lower and upper bound for that reaction. A feature will be generated
for any component of a cobra.Model (e.g. Reaction, Gene) that has an attribute value (e.g. Reaction.
lower_bound, Reaction.gene_reaction_rule) that varies across the ensemble. As you can see from this
result, a feature is created at the level of the specific attribute that varies, not the model component (e.g. we created a
Feature for each bound of each Reaction, not for the Reaction objects themselves).

This information can be inferred from feature ID (medusa.Feature.id), but each Feature also has a set of
attributes that encode the information. Some useful attributes, described in the order printed below: getting the
Ensemble that the Feature belongs to, the component in the Ensemble.base_model that the Feature
describes, the attribute of the component in the Ensemble.base_model whose value the Feature specifies, and
the ID of the Feature:

In [8]: first_feature = example_ensemble.features[0]
print(first_feature.ensemble)
print(first_feature.base_component)

14 Chapter 1. Index

medusa Documentation, Release 0.2.0

print(first_feature.component_attribute)
print(first_feature.id)

textbook_ensemble
ACALDt: acald_e <=> acald_c
lower_bound
ACALDt_lower_bound

Just as each member has an attribute, states, that returns the value of every feature for that member, each
feature has a states dictionary that maps each member.id to the value of the feature in the corresponding
member, e.g.:

In [9]: print(first_feature.states)

{'second_textbook': -1000.0, 'first_textbook': 0.0}

1.7.5 Strategies for getting information about an ensemble and its members

Where possible, we use conventions from cobrapy for accessing information about attributes. In cobrapy, the Model
object has multiple containers in the form of DictLists: Model.reactions,Model.metabolites,Model.
genes. Equivalently in medusa, each Ensemble has similarly constructed containers: Ensemble.members and
Ensemble.features.

As such, information about specific Member and Feature objects can be accessed just like Reaction,
Metabolite, and Gene objects in cobrapy:

In [10]: # Remember, our Ensemble holds a normal cobrapy Model in base_model
extracted_base_model = example_ensemble.base_model
Accessing object by id is common in cobrapy
rxn = extracted_base_model.reactions.get_by_id('ACALDt')
We can do the same thing for features:
feat = example_ensemble.features.get_by_id('ACALDt_lower_bound')
print(rxn)
print(feat.base_component)
print(feat.component_attribute)

And for members:
memb = example_ensemble.members.get_by_id('first_textbook')
print('\nHere are the states for this member:')
print(memb.states)

ACALDt: acald_e <=> acald_c
ACALDt: acald_e <=> acald_c
lower_bound

Here are the states for this member:
{<Feature ACONTb_lower_bound at 0x7efcac761e10>: -1000.0, <Feature ACKr_lower_bound at 0x7efcac91d128>: 0.0, <Feature ACt2r_upper_bound at 0x7efcac91db38>: 1000.0, <Feature ACt2r_lower_bound at 0x7efcac91dd68>: -1000.0, <Feature ACKr_upper_bound at 0x7efcac91d668>: 0.0, <Feature ACALDt_upper_bound at 0x7efcac91d198>: 0.0, <Feature ACALDt_lower_bound at 0x7efcac91d390>: 0.0, <Feature ACONTb_upper_bound at 0x7efcac91def0>: 1000.0}

These DictList objects are all iterables, meaning that any python operation that acts on an iterable can take them as
input. This is often convenient when working with either cobrapy Models or medusa Ensembles. For example,
suppose we are interested in getting the list of all components described by features in the Ensemble:

In [11]: components = []
for feat in example_ensemble.features:

components.append(feat.base_component)

print(components)

or, use the one-liner which gives the same result:
components = [feat.base_component for feat in example_ensemble.features]

1.7. Introduction to Medusa 15

https://docs.python.org/3/glossary.html#term-iterable

medusa Documentation, Release 0.2.0

print(components)

[<Reaction ACALDt at 0x7efcac66f0b8>, <Reaction ACALDt at 0x7efcac66f0b8>, <Reaction ACKr at 0x7efcac66f128>, <Reaction ACKr at 0x7efcac66f128>, <Reaction ACONTb at 0x7efcac758b00>, <Reaction ACONTb at 0x7efcac758b00>, <Reaction ACt2r at 0x7efcac7587f0>, <Reaction ACt2r at 0x7efcac7587f0>]
[<Reaction ACALDt at 0x7efcac66f0b8>, <Reaction ACALDt at 0x7efcac66f0b8>, <Reaction ACKr at 0x7efcac66f128>, <Reaction ACKr at 0x7efcac66f128>, <Reaction ACONTb at 0x7efcac758b00>, <Reaction ACONTb at 0x7efcac758b00>, <Reaction ACt2r at 0x7efcac7587f0>, <Reaction ACt2r at 0x7efcac7587f0>]

1.8 Creating an ensemble

Medusa has two families of methods for generating ensembles: expansion and degradation. Expansion approaches
currently consist of gapfilling algorithms. Degradation approaches include random degradation (useful for benchmark-
ing new gapfilling methods) and omics integration algorithms that constrain network (e.g. transcriptomics integration;
not currently implemented).

1.8.1 Expanding a network

The most common network expansion approach involving metabolic networks is algorithmic gapfilling, where the
goal is to identify reactions to add to a network that allow a feasible solution. An example of this is adding a minimal
number of reactions to enable biomass production in a model for an organism in a specific condition (e.g. SMILEY
[1]). See the gapfilling documentation in cobrapy for the formulation of this problem.

Adding the minimum number of reactions to satisfy a biological function is just one approach to the gapfilling strategy.
An alternative approach is to reformulate the problem to add the minimum amount of flux through candidate reactions
for gapfilling. This has the advantage of being an entirely continuous problem, rather than the integer problem posed
by SMILEY, so the time to find a solution is usually 1-2 orders of magnitude shorter.

In medusa, implementations of both gapfilling strategies are available, but we recommend the continuous ap-
proach, which we demonstrate below.

1.8.2 Input for gapfilling

The key inputs for gapfilling are a cobra.Model object representing the GENRE you are filling gaps in and a second
cobra.Model object containing reactions that form a universal reaction database (sometimes called a universal
reaction bag). Additionally, context-specific information, such as the environmental conditions in which a phenotype
was observed, may be needed to constrain the model during gapfilling.

Let’s use test data available in medusa for gapfilling. The approach we’ll take to generate multiple solutions involves
iteratively gapfilling across multiple media conditions to generate a single gapfilled model. We repeat the process with
the original model but with a shuffled version of the media conditions (changing the order in which media conditions
are used during gapfilling), each time generating a new solution. You can see examples of this approach in Biggs &
Papin [2] and Medlock & Papin [3].

In [1]: # Load the test model for Staphylococcus aureus, originally generated with ModelSEED
import medusa
from medusa.test import create_test_model
model = create_test_model('Saureus_seed')

Load the biolog data from Plata et al., Nature 2014
from medusa.test import load_biolog_plata
biolog_base_composition, biolog_base_dict, biolog_thresholded = load_biolog_plata()
biolog_base_composition

Out[1]: Name ID
0 H2O cpd00001_e
1 O2 cpd00007_e

16 Chapter 1. Index

https://cobrapy.readthedocs.io/en/latest/gapfilling.html

medusa Documentation, Release 0.2.0

2 Phosphate cpd00009_e
3 CO2 cpd00011_e
4 NH3 cpd00013_e
5 Mn2+ cpd00030_e
6 Zn2+ cpd00034_e
7 Sulfate cpd00048_e
8 Cu2+ cpd00058_e
9 Ca2+ cpd00063_e
10 H+ cpd00067_e
11 Cl- cpd00099_e
12 Co2+ cpd00149_e
13 K+ cpd00205_e
14 Mg cpd00254_e
15 Na+ cpd00971_e
16 Fe2+ cpd10515_e
17 fe3 cpd10516_e
18 Heme cpd00028_e
19 H2S2O3 cpd00268_e

Here, biolog_base_composition describes the media components that are present in every biolog condition
(Note: if you are using these data for your own purposes, keep in mind that we added Heme and H2S2O3 due to
common issues encountered in models. These are not actually in the biolog medium).

The biolog_base_dict is a dictionary version of this, which we’ll use as direct input to the models as part of
model.medium

In [2]: biolog_base_dict

Out[2]: {'cpd00001_e': 1000,
'cpd00007_e': 1000,
'cpd00009_e': 1000,
'cpd00011_e': 1000,
'cpd00013_e': 1000,
'cpd00028_e': 1000,
'cpd00030_e': 1000,
'cpd00034_e': 1000,
'cpd00048_e': 1000,
'cpd00058_e': 1000,
'cpd00063_e': 1000,
'cpd00067_e': 1000,
'cpd00099_e': 1000,
'cpd00149_e': 1000,
'cpd00205_e': 1000,
'cpd00254_e': 1000,
'cpd00268_e': 1000,
'cpd00971_e': 1000,
'cpd10515_e': 1000,
'cpd10516_e': 1000}

The actual growth/no growth data is in biolog_thresholded, which is a pandas DataFrame with organism
species/genus as rows, and biolog media conditions as columns represented by the ModelSEED metabolite ID for the
single carbon/nitrogen source present. The original source of these data is [4]; there, you can find the non-thresholded
values if curious. Here, we’ve thresholded the growth data using the same threshold reported in the paper (>=10
relative units of tetrazolium dye).

In [3]: # Just inspect the first 5 species
biolog_thresholded.head(5)

Out[3]: cpd11594_e cpd00179_e cpd00794_e cpd03845_e \
Staphylococcus aureus True True True False
Ralstonia solanacearum False False True False

1.8. Creating an ensemble 17

medusa Documentation, Release 0.2.0

Staphylococcus haemolyticus True True True False
Bacillus pumilus True False True True
Corynebacterium glutamicum True True False False

cpd05158_e cpd00076_e cpd01133_e cpd00382_e \
Staphylococcus aureus True True False False
Ralstonia solanacearum False True False False
Staphylococcus haemolyticus False True False False
Bacillus pumilus True True True True
Corynebacterium glutamicum False True False False

cpd00208_e cpd03198_e ... cpd00024_e \
Staphylococcus aureus True False ... True
Ralstonia solanacearum False False ... True
Staphylococcus haemolyticus True False ... True
Bacillus pumilus False True ... True
Corynebacterium glutamicum False False ... False

cpd00386_e cpd00130_e cpd00281_e cpd03561_e \
Staphylococcus aureus False True False True
Ralstonia solanacearum False True True False
Staphylococcus haemolyticus False False False True
Bacillus pumilus True True True True
Corynebacterium glutamicum False True True True

cpd00094_e cpd00142_e cpd00141_e cpd00029_e \
Staphylococcus aureus True True True True
Ralstonia solanacearum False False True True
Staphylococcus haemolyticus True True False True
Bacillus pumilus True True True True
Corynebacterium glutamicum True True True True

cpd00047_e
Staphylococcus aureus True
Ralstonia solanacearum True
Staphylococcus haemolyticus True
Bacillus pumilus True
Corynebacterium glutamicum False

[5 rows x 60 columns]

Now we’ll extract the positive growth conditions for the species we’re interested in (Staphylococcus aureus)

In [4]: test_mod_pheno = biolog_thresholded.loc['Staphylococcus aureus']
test_mod_pheno = list(test_mod_pheno[test_mod_pheno == True].index)
test_mod_pheno

Out[4]: ['cpd11594_e',
'cpd00179_e',
'cpd00794_e',
'cpd05158_e',
'cpd00076_e',
'cpd00208_e',
'cpd15584_e',
'cpd00122_e',
'cpd00492_e',
'cpd00232_e',
'cpd19001_e',
'cpd00138_e',
'cpd00082_e',

18 Chapter 1. Index

medusa Documentation, Release 0.2.0

'cpd00709_e',
'cpd00396_e',
'cpd00246_e',
'cpd00314_e',
'cpd01307_e',
'cpd00100_e',
'cpd00079_e',
'cpd00072_e',
'cpd00320_e',
'cpd00035_e',
'cpd00051_e',
'cpd00041_e',
'cpd00023_e',
'cpd00119_e',
'cpd01293_e',
'cpd00054_e',
'cpd00222_e',
'cpd05264_e',
'cpd00159_e',
'cpd00024_e',
'cpd00130_e',
'cpd03561_e',
'cpd00094_e',
'cpd00142_e',
'cpd00141_e',
'cpd00029_e',
'cpd00047_e']

In order to gapfill this model, we have to make sure that the biolog media components are in the model, and that
there are exchange reactions for each of these metabolites. To make this process more convenient, we’ll load the
universal reaction database now, which we will also use later in the process. The universal model is large, and the
load_universal_modelseed does some extra processing of the model, so loading it may take a few minutes.
First we’ll check for changes that need to be made:

In [5]: # load the universal reaction database
from medusa.test import load_universal_modelseed
from cobra.core import Reaction
universal = load_universal_modelseed()

check for biolog base components in the model and record
the metabolites/exchanges that need to be added
add_mets = []
add_exchanges = []
for met in list(biolog_base_dict.keys()):

try:
model.metabolites.get_by_id(met)

except:
print('no '+met)
add_met = universal.metabolites.get_by_id(met).copy()
add_mets.append(add_met)

model.add_metabolites(add_mets)

for met in list(biolog_base_dict.keys()):
Search for exchange reactions
try:

model.reactions.get_by_id('EX_'+met)
except:

add_met = universal.metabolites.get_by_id(met)

1.8. Creating an ensemble 19

medusa Documentation, Release 0.2.0

ex_rxn = Reaction('EX_' + met)
ex_rxn.name = "Exchange reaction for " + met
ex_rxn.lower_bound = -1000
ex_rxn.upper_bound = 1000
ex_rxn.add_metabolites({add_met:-1})
add_exchanges.append(ex_rxn)

model.add_reactions(add_exchanges)

no cpd00013_e

Next, we need to do the same for the single carbon/nitrogen sources in the biolog data. When performing this workflow
on your own GENRE, you may want to check that all of the media components that enable growth have suitable
transporters in the universal model (or already in the draft model).

In [6]: # Find metabolites from the biolog data that are missing in the test model
and add them from the universal
missing_mets = []
missing_exchanges = []
media_dicts = {}
for met_id in test_mod_pheno:

try:
model.metabolites.get_by_id(met_id)

except:
print(met_id + " was not in model, adding met and exchange reaction")
met = universal.metabolites.get_by_id(met_id).copy()
missing_mets.append(met)
ex_rxn = Reaction('EX_' + met_id)
ex_rxn.name = "Exchange reaction for " + met_id
ex_rxn.lower_bound = -1000
ex_rxn.upper_bound = 1000
ex_rxn.add_metabolites({met:-1})
missing_exchanges.append(ex_rxn)

media_dicts[met_id] = biolog_base_dict.copy()
media_dicts[met_id] = {'EX_'+k:v for k,v in media_dicts[met_id].items()}
media_dicts[met_id]['EX_'+met_id] = 1000

model.add_metabolites(missing_mets)
model.add_reactions(missing_exchanges)

cpd11594_e was not in model, adding met and exchange reaction
cpd05158_e was not in model, adding met and exchange reaction
cpd15584_e was not in model, adding met and exchange reaction
cpd00492_e was not in model, adding met and exchange reaction
cpd00232_e was not in model, adding met and exchange reaction
cpd19001_e was not in model, adding met and exchange reaction
cpd00709_e was not in model, adding met and exchange reaction
cpd00396_e was not in model, adding met and exchange reaction
cpd01307_e was not in model, adding met and exchange reaction
cpd00079_e was not in model, adding met and exchange reaction
cpd00072_e was not in model, adding met and exchange reaction
cpd00320_e was not in model, adding met and exchange reaction
cpd01293_e was not in model, adding met and exchange reaction
cpd05264_e was not in model, adding met and exchange reaction
cpd03561_e was not in model, adding met and exchange reaction
cpd00094_e was not in model, adding met and exchange reaction
cpd00142_e was not in model, adding met and exchange reaction
cpd00141_e was not in model, adding met and exchange reaction
cpd00029_e was not in model, adding met and exchange reaction

Now, let’s fill some gaps using the iterative_gapfill_from_binary_phenotypes function. For simplic-

20 Chapter 1. Index

medusa Documentation, Release 0.2.0

ity, we’ll just take the first 5 conditions and perform gapfilling for 10 cycles, which should yield an ensemble with
10 members. We set lower_bound = 0.05, which requires that the model produces 0.05 units of flux through
the previous objective function (here, biomass production) which is now set as a constraint (i.e. vbm >= 0.05).
inclusion_threshold is the amount of flux through a reaction required to include it in the gapfill solution,
which is necessary because of the limits of numerical precision. Generally a small number (e.g. < 1E-8) is a good
choice. However, some gapfill solutions may have reactions with non-zero flux in ranges lower than this; if this oc-
curs, Medusa will raise an error letting you know that it failed to validate the gapfill solution, and that you should try
lowering the threshold.

In [7]: from medusa.reconstruct.expand import iterative_gapfill_from_binary_phenotypes
select a subset of the biolog conditions to perform gapfilling with
sources = list(media_dicts.keys())
sub_dict = {sources[0]:media_dicts[sources[0]],

sources[1]:media_dicts[sources[1]],
sources[2]:media_dicts[sources[2]],
sources[3]:media_dicts[sources[3]],
sources[4]:media_dicts[sources[4]]}

num_cycles = 10
lower_bound = 0.05
flux_cutoff = 1E-10
ensemble = iterative_gapfill_from_binary_phenotypes(model,universal,sub_dict,num_cycles,\

lower_bound=lower_bound,\
inclusion_threshold=1E-10,\
exchange_reactions=False,\
demand_reactions=False,\
exchange_prefix='EX')

Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
building features...
updating members...

In [8]: print(len(ensemble.members))
print(ensemble.members)

10
[<Member Staphylococcus aureus_gapfilled_1 at 0x7ff9695d2128>, <Member Staphylococcus aureus_gapfilled_8 at 0x7ff9695ab080>, <Member Staphylococcus aureus_gapfilled_4 at 0x7ff9695d9898>, <Member Staphylococcus aureus_gapfilled_3 at 0x7ff9695d9940>, <Member Staphylococcus aureus_gapfilled_6 at 0x7ff9695d97f0>, <Member Staphylococcus aureus_gapfilled_5 at 0x7ff9695d9780>, <Member Staphylococcus aureus_gapfilled_7 at 0x7ff9695d9828>, <Member Staphylococcus aureus_gapfilled_9 at 0x7ff9695d97b8>, <Member Staphylococcus aureus_gapfilled_2 at 0x7ff9695d95f8>, <Member Staphylococcus aureus_gapfilled_0 at 0x7ff9695d9630>]

In [9]: # Check out the features that vary across the ensemble
print(len(ensemble.features))
print([feature.base_component.id for feature in ensemble.features])

78
['rxn05487_c', 'rxn05487_c', 'rxn13647_c', 'rxn13647_c', 'rxn31356_c', 'rxn31356_c', 'rxn12303_c', 'rxn12303_c', 'rxn12215_c', 'rxn12215_c', 'rxn01360_c', 'rxn01360_c', 'rxn00555_c', 'rxn00555_c', 'rxn10348_c', 'rxn10348_c', 'rxn12404_c', 'rxn12404_c', 'rxn03426_c', 'rxn03426_c', 'rxn08126_c', 'rxn08126_c', 'rxn01547_c', 'rxn01547_c', 'rxn08933_c', 'rxn08933_c', 'rxn10868_c', 'rxn10868_c', 'rxn00916_c', 'rxn00916_c', 'rxn01361_c', 'rxn01361_c', 'rxn05466_c', 'rxn05466_c', 'rxn07760_c', 'rxn07760_c', 'rxn12060_c', 'rxn12060_c', 'rxn09989_c', 'rxn09989_c', 'rxn07765_c', 'rxn07765_c', 'rxn01014_c', 'rxn01014_c', 'rxn07766_c', 'rxn07766_c', 'rxn13648_c', 'rxn13648_c', 'rxn20627_c', 'rxn20627_c', 'rxn08127_c', 'rxn08127_c', 'rxn05178_c', 'rxn05178_c', 'rxn11158_c', 'rxn11158_c', 'rxn13141_c', 'rxn13141_c', 'rxn38855_c', 'rxn38855_c', 'rxn36697_c', 'rxn36697_c', 'rxn07759_c', 'rxn07759_c', 'rxn00263_c', 'rxn00263_c', 'rxn05746_c', 'rxn05746_c', 'rxn15594_c', 'rxn15594_c', 'rxn05531_c', 'rxn05531_c', 'rxn00693_c', 'rxn00693_c', 'rxn09180_c', 'rxn09180_c', 'rxn00705_c', 'rxn00705_c']

1.8.3 Degrading a network

Coming here soon.

In []:

1.8. Creating an ensemble 21

medusa Documentation, Release 0.2.0

References

[1]: Reed et al., “Systems approach to refining genome annotation”, PNAS 2006

[2]: Biggs & Papin, “Managing uncertainty in metabolic network structure and improving predictions using Ensem-
bleFBA”, PLoS Computational Biology 2017

[3]: Medlock & Papin, “Guiding the refinement of biochemical knowledgebases with ensembles of metabolic net-
works and semi-supervised learning”, BioRxiv 2018

[4]: Plata et al., “Long-term phenotypic evolution of bacteria”, Nature 2015

1.9 Performing ensemble simulations

With a functional Ensemble in hand, you’re ready to perform simulations. In medusa, most simulations are per-
formed by setting the model structure to represent an individual member, using cobrapy functions for the actual
simulation, then repeating for all or many ensemble members.

1.9.1 Ensemble Flux Balance Analysis

Flux balance analysis (FBA) is one of the most widely used techniques in systems biology. See What is flux balance
analysis? for an introduction to FBA, and the cobrapy documentation to see how FBA is performed with a single
model.

When using medusa for FBA, the environmental conditions and objective function should be specified in
ensemble.base_model, just as if it were a normal cobrapy Model:

In [1]: import medusa
from medusa.test import create_test_ensemble

ensemble = create_test_ensemble("Staphylococcus aureus")

In [2]: ensemble.base_model.objective.expression

Out[2]: 1.0*bio1 - 1.0*bio1_reverse_b18f7

The current objective function is the biomass reaction (bio1)–to change this, just set the objective to another reaction.
Let’s change the objective to CO2 exchange, then change it back to biomass production:

In [3]: ensemble.base_model.objective = 'EX_cpd00011_e'
print(ensemble.base_model.objective.expression)
ensemble.base_model.objective = 'bio1'
print(ensemble.base_model.objective.expression)

1.0*EX_cpd00011_e - 1.0*EX_cpd00011_e_reverse_896eb
1.0*bio1 - 1.0*bio1_reverse_b18f7

Similarly, you can manipulate the environmental conditions as in cobrapy. The base model for this example ensemble
is from ModelSEED, so exchange reactions are specified with the 'EX_' prefix, followed by the metabolite id. Let’s
take a look at the exchange reactions that are currently open:

In [4]: medium = ensemble.base_model.medium
medium

Out[4]: {'EX_cpd00001_e': 1000.0,
'EX_cpd00007_e': 1000.0,
'EX_cpd00009_e': 1000.0,
'EX_cpd00010_e': 1000.0,
'EX_cpd00011_e': 1000.0,

22 Chapter 1. Index

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/
https://cobrapy.readthedocs.io/en/latest/simulating.html

medusa Documentation, Release 0.2.0

'EX_cpd00012_e': 1000.0,
'EX_cpd00013_e': 1000,
'EX_cpd00023_e': 1000.0,
'EX_cpd00024_e': 1000.0,
'EX_cpd00027_e': 1000.0,
'EX_cpd00028_e': 1000.0,
'EX_cpd00029_e': 1000,
'EX_cpd00030_e': 1000.0,
'EX_cpd00033_e': 1000.0,
'EX_cpd00034_e': 1000.0,
'EX_cpd00035_e': 1000.0,
'EX_cpd00039_e': 1000.0,
'EX_cpd00041_e': 1000.0,
'EX_cpd00047_e': 1000.0,
'EX_cpd00048_e': 1000.0,
'EX_cpd00051_e': 1000.0,
'EX_cpd00053_e': 1000.0,
'EX_cpd00054_e': 1000.0,
'EX_cpd00058_e': 1000.0,
'EX_cpd00060_e': 1000.0,
'EX_cpd00063_e': 1000.0,
'EX_cpd00064_e': 1000.0,
'EX_cpd00066_e': 1000.0,
'EX_cpd00067_e': 1000.0,
'EX_cpd00069_e': 1000.0,
'EX_cpd00072_e': 1000,
'EX_cpd00073_e': 1000.0,
'EX_cpd00075_e': 1000.0,
'EX_cpd00076_e': 1000.0,
'EX_cpd00079_e': 1000,
'EX_cpd00080_e': 1000.0,
'EX_cpd00082_e': 1000.0,
'EX_cpd00092_e': 1000.0,
'EX_cpd00094_e': 1000,
'EX_cpd00098_e': 1000.0,
'EX_cpd00099_e': 1000.0,
'EX_cpd00100_e': 1000.0,
'EX_cpd00104_e': 1000.0,
'EX_cpd00105_e': 1000.0,
'EX_cpd00117_e': 1000.0,
'EX_cpd00119_e': 1000.0,
'EX_cpd00122_e': 1000.0,
'EX_cpd00129_e': 1000.0,
'EX_cpd00130_e': 1000.0,
'EX_cpd00137_e': 1000.0,
'EX_cpd00138_e': 1000.0,
'EX_cpd00141_e': 1000,
'EX_cpd00142_e': 1000,
'EX_cpd00149_e': 1000.0,
'EX_cpd00159_e': 1000.0,
'EX_cpd00179_e': 1000.0,
'EX_cpd00182_e': 1000.0,
'EX_cpd00184_e': 1000.0,
'EX_cpd00205_e': 1000.0,
'EX_cpd00208_e': 1000.0,
'EX_cpd00220_e': 1000.0,
'EX_cpd00222_e': 1000.0,
'EX_cpd00232_e': 1000,
'EX_cpd00244_e': 1000.0,

1.9. Performing ensemble simulations 23

medusa Documentation, Release 0.2.0

'EX_cpd00246_e': 1000.0,
'EX_cpd00249_e': 1000.0,
'EX_cpd00254_e': 1000.0,
'EX_cpd00264_e': 1000.0,
'EX_cpd00268_e': 1000.0,
'EX_cpd00276_e': 1000.0,
'EX_cpd00277_e': 1000.0,
'EX_cpd00305_e': 1000.0,
'EX_cpd00309_e': 1000.0,
'EX_cpd00314_e': 1000.0,
'EX_cpd00320_e': 1000,
'EX_cpd00322_e': 1000.0,
'EX_cpd00355_e': 1000.0,
'EX_cpd00367_e': 1000.0,
'EX_cpd00393_e': 1000.0,
'EX_cpd00396_e': 1000,
'EX_cpd00412_e': 1000.0,
'EX_cpd00438_e': 1000.0,
'EX_cpd00492_e': 1000,
'EX_cpd00531_e': 1000.0,
'EX_cpd00540_e': 1000.0,
'EX_cpd00550_e': 1000.0,
'EX_cpd00588_e': 1000.0,
'EX_cpd00637_e': 1000.0,
'EX_cpd00654_e': 1000.0,
'EX_cpd00681_e': 1000.0,
'EX_cpd00709_e': 1000,
'EX_cpd00794_e': 1000.0,
'EX_cpd00971_e': 1000.0,
'EX_cpd01012_e': 1000.0,
'EX_cpd01030_e': 1000.0,
'EX_cpd01080_e': 1000.0,
'EX_cpd01171_e': 1000.0,
'EX_cpd01262_e': 1000.0,
'EX_cpd01293_e': 1000,
'EX_cpd01307_e': 1000,
'EX_cpd01329_e': 1000.0,
'EX_cpd01914_e': 1000.0,
'EX_cpd03279_e': 1000.0,
'EX_cpd03561_e': 1000,
'EX_cpd03696_e': 1000.0,
'EX_cpd03724_e': 1000.0,
'EX_cpd03725_e': 1000.0,
'EX_cpd04097_e': 1000.0,
'EX_cpd05158_e': 1000,
'EX_cpd05264_e': 1000,
'EX_cpd08305_e': 1000.0,
'EX_cpd08306_e': 1000.0,
'EX_cpd10515_e': 1000.0,
'EX_cpd10516_e': 1000.0,
'EX_cpd11576_e': 1000.0,
'EX_cpd11594_e': 1000,
'EX_cpd11597_e': 1000.0,
'EX_cpd15584_e': 1000,
'EX_cpd19001_e': 1000}

That’s a lot of open exchange reactions! Let’s make them a bit more realistic for an in vitro situation. We’ll load a file
specifying the base composition of the media in biolog single C/N growth conditions, and set the media conditions
to reflect that. The base composition is missing a carbon source, so we’ll enable uptake of glucose. In the medium

24 Chapter 1. Index

medusa Documentation, Release 0.2.0

dictionary, the numbers for each exchange reaction are uptake rates. If you inspect the actual exchange reactions, you
will find that the equivalent to an uptake rate of 1000 units is a lower bound of -1000, because our exchange reactions
are defined with the boundary metabolite as the reactant, e.g. cpd00182_e -->.

In [5]: import pandas as pd
biolog_base = pd.read_csv("../medusa/test/data/biolog_base_composition.csv", sep=",")
biolog_base

Out[5]: Name ID
0 H2O cpd00001_e
1 O2 cpd00007_e
2 Phosphate cpd00009_e
3 CO2 cpd00011_e
4 NH3 cpd00013_e
5 Mn2+ cpd00030_e
6 Zn2+ cpd00034_e
7 Sulfate cpd00048_e
8 Cu2+ cpd00058_e
9 Ca2+ cpd00063_e
10 H+ cpd00067_e
11 Cl- cpd00099_e
12 Co2+ cpd00149_e
13 K+ cpd00205_e
14 Mg cpd00254_e
15 Na+ cpd00971_e
16 Fe2+ cpd10515_e
17 fe3 cpd10516_e
18 Heme cpd00028_e
19 H2S2O3 cpd00268_e

In [6]: # convert the biolog base to a dictionary, which we can use to set ensemble.base_model.medium directly.
biolog_base = {'EX_'+component:1000 for component in biolog_base['ID']}

add glucose uptake to the new medium dictionary
biolog_base['EX_cpd00182_e'] = 10

Set the medium on the base model
ensemble.base_model.medium = biolog_base
ensemble.base_model.medium

Out[6]: {'EX_cpd00001_e': 1000,
'EX_cpd00007_e': 1000,
'EX_cpd00009_e': 1000,
'EX_cpd00011_e': 1000,
'EX_cpd00013_e': 1000,
'EX_cpd00028_e': 1000,
'EX_cpd00030_e': 1000,
'EX_cpd00034_e': 1000,
'EX_cpd00048_e': 1000,
'EX_cpd00058_e': 1000,
'EX_cpd00063_e': 1000,
'EX_cpd00067_e': 1000,
'EX_cpd00099_e': 1000,
'EX_cpd00149_e': 1000,
'EX_cpd00182_e': 10,
'EX_cpd00205_e': 1000,
'EX_cpd00254_e': 1000,
'EX_cpd00268_e': 1000,
'EX_cpd00971_e': 1000,
'EX_cpd10515_e': 1000,

1.9. Performing ensemble simulations 25

medusa Documentation, Release 0.2.0

'EX_cpd10516_e': 1000}

With the medium set, we can now simulate growth in these conditions:

In [7]: from medusa.flux_analysis import flux_balance
fluxes = flux_balance.optimize_ensemble(ensemble,return_flux='bio1')

In [16]: # get fluxes for the first 10 members
fluxes.head(10)

Out[16]: bio1
Staphylococcus aureus_gapfilled_18 14.890551
Staphylococcus aureus_gapfilled_477 12.218825
Staphylococcus aureus_gapfilled_430 19.198765
Staphylococcus aureus_gapfilled_735 14.875922
Staphylococcus aureus_gapfilled_916 12.223456
Staphylococcus aureus_gapfilled_983 19.375070
Staphylococcus aureus_gapfilled_371 13.113148
Staphylococcus aureus_gapfilled_255 12.223456
Staphylococcus aureus_gapfilled_729 14.891239
Staphylococcus aureus_gapfilled_925 19.198765

In [10]: import matplotlib.pylab as plt
fig, ax = plt.subplots()
plt.hist(fluxes['bio1'])
ax.set_ylabel('# ensemble members')
ax.set_xlabel('Flux through biomass reaction')
plt.show()

You may want to perform simulations with only a subset of ensemble members. There are two options for this; either
identifying the desired members for simulation with the specific_models parameter, or passing a number of
random members to perform simulations with the num_models parameter.

In [14]: # perform FBA with a random set of 10 members:
subflux = flux_balance.optimize_ensemble(ensemble, num_models = 10, return_flux = "bio1")
subflux

26 Chapter 1. Index

medusa Documentation, Release 0.2.0

Out[14]: bio1
Staphylococcus aureus_gapfilled_300 18.441010
Staphylococcus aureus_gapfilled_181 14.875922
Staphylococcus aureus_gapfilled_667 17.618230
Staphylococcus aureus_gapfilled_668 14.875922
Staphylococcus aureus_gapfilled_639 14.186860
Staphylococcus aureus_gapfilled_636 14.186860
Staphylococcus aureus_gapfilled_738 14.643953
Staphylococcus aureus_gapfilled_68 12.223456
Staphylococcus aureus_gapfilled_87 14.875922
Staphylococcus aureus_gapfilled_580 12.223456

In [15]: submembers = [member.id for member in ensemble.members[0:10]]
print(submembers)
subflux = flux_balance.optimize_ensemble(ensemble, specific_models = submembers, return_flux = "bio1")
subflux

['Staphylococcus aureus_gapfilled_892', 'Staphylococcus aureus_gapfilled_851', 'Staphylococcus aureus_gapfilled_501', 'Staphylococcus aureus_gapfilled_927', 'Staphylococcus aureus_gapfilled_875', 'Staphylococcus aureus_gapfilled_500', 'Staphylococcus aureus_gapfilled_751', 'Staphylococcus aureus_gapfilled_849', 'Staphylococcus aureus_gapfilled_372', 'Staphylococcus aureus_gapfilled_421']

Out[15]: bio1
Staphylococcus aureus_gapfilled_372 12.223456
Staphylococcus aureus_gapfilled_421 13.113148
Staphylococcus aureus_gapfilled_500 19.198765
Staphylococcus aureus_gapfilled_501 12.223456
Staphylococcus aureus_gapfilled_751 14.209162
Staphylococcus aureus_gapfilled_849 12.224814
Staphylococcus aureus_gapfilled_851 19.375070
Staphylococcus aureus_gapfilled_875 17.872504
Staphylococcus aureus_gapfilled_892 19.375070
Staphylococcus aureus_gapfilled_927 19.198765

1.9.2 Flux Variability Analysis

In []:

1.9.3 Gene and Reaction Deletions

In []:

1.10 Input and output

Currently, the only supported approach for loading and saving ensembles in medusa is via pickle. pickle is the
Python module that serializes and de-serializes Python objects (i.e. converts to/from a binary representation). This
is an intentional design choice–as medusa matures, we will identify a feasible route for standardization through an
extension to the Systems Biology Markup Language (SBML), which is the de facto standard for sharing genome-scale
metabolic network reconstructions.

To load an ensemble, use the load function from the pickle module:

In [1]: import medusa
from pickle import load

with open("../medusa/test/data/Staphylococcus_aureus_ensemble.pickle", 'rb') as infile:
ensemble = load(infile)

To save an ensemble, you can pickle it with:

1.10. Input and output 27

https://docs.python.org/3/library/pickle.html

medusa Documentation, Release 0.2.0

In [2]: save_dir = ("../medusa/test/data/Staphylococcus_aureus_repickled.pickle")
ensemble.to_pickle(save_dir)

You can always save the base model for an ensemble using the standard cobrapy I/O functions, but keep in mind the
states for each feature will be set statically–the model you save will only represent one of the ensemble members, and
will likely have many features shut off (e.g. there will be many closed reactions if the features for those reactions are
not present in the ensemble member that the state reflects). When publishing ensembles, we recommend including the
pickled medusa ensemble, an SBML file for the base model, and a spreadsheet of feature states for each member.

1.11 Ensemble Size and Speed Benchmarking

Ensembles are specifically designed for optimal usability, memory usage, and computational speed. In this tutorial
we explore the size and speed related characteristics of Ensembles compared to using the equivalent individual
models. We aim to begin to answer the following questions: - How much memory does an ensemble use when
working with it compared to working with the equivalent individual models? - How much disk space is used to store
ensembles compared to the equivalent individual models? - How long does it take to run FBA for all members of an
ensemble compared to the equivalent individual models?

1.11.1 Ensemble memory requirements during use and when saved

Ensembles are structured to minimize the amount of memory required when loaded and when being saved. One
of the major challenges when working with ensembles of models is having all of the models readily available in
memory while conducting analyses. With efficient packaging of the features that are different between members of an
ensemble, we were able to significantly reduce the amount of memory and hard drive space required for working with
ensembles of models.

In [1]: import sys
import os
import psutil
import medusa
import numpy
from medusa.test import create_test_ensemble

In [2]: # RAM required to load in a 1000 member ensemble

Check initial RAM usage
RAM_before = psutil.Process(os.getpid()).memory_info()[0]/1024**2 # Units = MB

Load in test ensemble from file
ensemble = create_test_ensemble("Staphylococcus aureus")

Check RAM usage after loading in ensemble
RAM_after = psutil.Process(os.getpid()).memory_info()[0]/1024**2 # Units = MB
RAM_used = RAM_after - RAM_before
Print RAM usage increase due to loading ensemble
print("%.2f" % (RAM_used), "MB")

57.82 MB

In [3]: # The test S. aureus model has 1000 members
print(len(ensemble.members),'Members')

1000 Members

In [4]: # RAM required to load a single individual model

from copy import deepcopy

28 Chapter 1. Index

https://cobrapy.readthedocs.io/en/latest/io.html

medusa Documentation, Release 0.2.0

Check initial RAM usage
RAM_before = psutil.Process(os.getpid()).memory_info()[0]/1024**2 # Units = MB

Deepcopy base model to create new instance of model in RAM
extracted_base_model_copy = deepcopy(ensemble.base_model)

Check RAM usage after loading in ensemble
RAM_after = psutil.Process(os.getpid()).memory_info()[0]/1024**2 # Units = MB
RAM_used = RAM_after - RAM_before
Print RAM usage increase due to loading ensemble
print("%.2f" % (RAM_used), "MB")

17.50 MB

In [5]: # If we were to load the individual base model as 1000 unique
model variables we would use 1000x as much RAM:
RAM_used_for_1000_individual_model_variables = RAM_used * 1000
print("%.2f" % (RAM_used_for_1000_individual_model_variables), 'MB or')
print("%.2f" % (RAM_used_for_1000_individual_model_variables/1024.0), 'GB')

17500.00 MB or
17.09 GB

In [6]: # Pickle the ensemble and extracted base model
import pickle
path = "../medusa/test/data/benchmarking/"
pickle.dump(ensemble, open(path+"Staphylococcus_aureus_ensemble1000.pickle","wb"))
pickle.dump(extracted_base_model_copy, open(path+"Staphylococcus_aureus_base_model.pickle","wb"))

In [7]: # Check for file size of ensemble
file_path = "../medusa/test/data/benchmarking/Staphylococcus_aureus_ensemble1000.pickle"
if os.path.isfile(file_path):

file_info = os.stat(file_path)
mb = file_info.st_size/(1024.0**2) # Convert from bytes to MB
print("%.2f %s" % (mb, 'MB for a 1000 member ensemble'))

else:
print("File path doesn't point to file.")

6.67 MB for a 1000 member ensemble

In [8]: # Check for file size of extracted base model
file_path = "../medusa/test/data/benchmarking/Staphylococcus_aureus_base_model.pickle"
if os.path.isfile(file_path):

file_info = os.stat(file_path)
mb = file_info.st_size/(1024.0**2) # Convert from bytes to MB
print("%.2f %s" % (mb, 'MB per model'))

else:
print("File path doesn't point to file.")

print("%.2f" % (mb*1000),'MB for 1000 individual model files.')
print("%.2f" % (mb*1000/1024),'GB for 1000 individual model files.')

1.07 MB per model
1070.01 MB for 1000 individual model files.
1.04 GB for 1000 individual model files.

1.11.2 Flux analysis speed testing

Running FBA requires a relatively short amount of time for a single model, however when working with ensembles
of 1000s of models, the simple optimization problems can add up to significant amounts of time. Here we explore the
expected timeframes for FBA with an ensemble and how that compares to using the equivalent number of individual

1.11. Ensemble Size and Speed Benchmarking 29

medusa Documentation, Release 0.2.0

models. It is important to note that during this benchmarking, we assume that the computer being used is capable
to loading all individual modelings into the RAM; this may not be the case for many modern laptop computers (e.g.,
~16GB spare memory required).

In [9]: import time
from medusa.flux_analysis import flux_balance

In [10]: # Time required to run FBA on a 1000 member ensemble using the innate Medusa functions.
runtimes = {}
trials = 5
for num_processes in [1,2,3,4]:

runtimes[num_processes] = []
for trial in range(0,trials):

t0 = time.time()
flux_balance.optimize_ensemble(ensemble, num_processes = num_processes)
t1 = time.time()
runtimes[num_processes].append(t1-t0)

print(str(num_processes) + ' processors: ' + str(numpy.mean(runtimes[num_processes])) + ' seconds for entire ensemble')

1 processors: 87.24728102684021 seconds for entire ensemble
2 processors: 44.09945402145386 seconds for entire ensemble
3 processors: 32.84902577400207 seconds for entire ensemble
4 processors: 27.70060839653015 seconds for entire ensemble

In [11]: # Time required to run FBA on 1000 individual models using a single processor.
This is the equivalent time that would be required if all 1000 models were pre-loaded in RAM.

trial_total = []
for trial in range(0,trials):

t_total = 0
for member in ensemble.members:

Set the member state
ensemble.set_state(member.id)
Start the timer to capture only time required to run FBA on each model
t0 = time.time()
solution = ensemble.base_model.optimize()
t1 = time.time()
t_total = t1-t0 + t_total

print("%.2f" % (t_total) ,'seconds for 1000 models')
trial_total.append(t_total)

print("%.2f" % (numpy.mean(trial_total)) ,'second average for 1000 models')

35.06 seconds for 1000 models
34.51 seconds for 1000 models
34.49 seconds for 1000 models
34.62 seconds for 1000 models
34.37 seconds for 1000 models
34.61 second average for 1000 models

Using individual models stored in memory is faster than an equivalent ensemble with 1-2 processors, but Medusa is
faster with an increasing number of processors. Keep in mind, however, that this comparison doesn’t consider the time
it takes to load all of the models (~200x faster in Medusa for an ensemble this size), make any modifications to the
media conditions for an ensemble (one operation in Medusa; 1000 independent operations with individual models),
and that using individual models requires far more memory (~300x in this case).

This comparison also doesn’t factor in the time required for the first optimization performed with any COBRApy
model. When a model is optimized once, the solver maintains the solution as a starting point for future optimization
steps, substantially reducing the time required for future simulations. Medusa intrinsically takes advantage of this by
only using one COBRApy model to represent the entire ensemble; the solution is recycled from member to member
during ensemble FBA in Medusa. In contrast, the first optimization step for every individual model loaded into
memory will be more computationally expensive, as seen by the timing in the cell below.

30 Chapter 1. Index

medusa Documentation, Release 0.2.0

In [13]: # Time required to run FBA on 1000 individual models with a complete solver reset
before each optimization problem is solved.

Load fresh version of model with blank solver state
fresh_base_model = pickle.load(open("../medusa/test/data/benchmarking/Staphylococcus_aureus_base_model.pickle","rb"))
Determine how long it takes to run FBA on one individual model
t0 = time.time()
fresh_base_model.optimize()
t1 = time.time()
t_total = t1-t0
Calculate how long it would take to run FBA on 1000 unique individual models
print("%.2f" % (t_total*1000), 'seconds for 1000 models')

192.96 seconds for 1000 models

1.12 Benchmarking ensemble generation

This notebook does some simple benchmarking of ensemble generation in Medusa through iterative gapfilling. You
can see the full narrative version of the process being benchmarked in the **Creating an ensemble** section of the
User Guide.

In [5]: # Load the test model for Staphylococcus aureus, originally generated with ModelSEED
import medusa
from medusa.test import create_test_model
model = create_test_model('Saureus_seed')

Load the biolog data from Plata et al., Nature 2014
from medusa.test import load_biolog_plata
biolog_base_composition, biolog_base_dict, biolog_thresholded = load_biolog_plata()

Extract growth/no growth calls for staph aureus
test_mod_pheno = biolog_thresholded.loc['Staphylococcus aureus']
test_mod_pheno = list(test_mod_pheno[test_mod_pheno == True].index)

load the universal reaction database
from medusa.test import load_universal_modelseed
from cobra.core import Reaction
universal = load_universal_modelseed()

check for biolog base components in the model and record
the metabolites/exchanges that need to be added
add_mets = []
add_exchanges = []
for met in list(biolog_base_dict.keys()):

try:
model.metabolites.get_by_id(met)

except:
print('no '+met)
add_met = universal.metabolites.get_by_id(met).copy()
add_mets.append(add_met)

model.add_metabolites(add_mets)

for met in list(biolog_base_dict.keys()):
Search for exchange reactions
try:

model.reactions.get_by_id('EX_'+met)

1.12. Benchmarking ensemble generation 31

https://medusa.readthedocs.io/en/latest/creating_ensemble.html

medusa Documentation, Release 0.2.0

except:
add_met = universal.metabolites.get_by_id(met)
ex_rxn = Reaction('EX_' + met)
ex_rxn.name = "Exchange reaction for " + met
ex_rxn.lower_bound = -1000
ex_rxn.upper_bound = 1000
ex_rxn.add_metabolites({add_met:-1})
add_exchanges.append(ex_rxn)

model.add_reactions(add_exchanges)

Find metabolites from the biolog data that are missing in the test model
and add them from the universal
missing_mets = []
missing_exchanges = []
media_dicts = {}
for met_id in test_mod_pheno:

try:
model.metabolites.get_by_id(met_id)

except:
print(met_id + " was not in model, adding met and exchange reaction")
met = universal.metabolites.get_by_id(met_id).copy()
missing_mets.append(met)
ex_rxn = Reaction('EX_' + met_id)
ex_rxn.name = "Exchange reaction for " + met_id
ex_rxn.lower_bound = -1000
ex_rxn.upper_bound = 1000
ex_rxn.add_metabolites({met:-1})
missing_exchanges.append(ex_rxn)

media_dicts[met_id] = biolog_base_dict.copy()
media_dicts[met_id] = {'EX_'+k:v for k,v in media_dicts[met_id].items()}
media_dicts[met_id]['EX_'+met_id] = 1000

model.add_metabolites(missing_mets)
model.add_reactions(missing_exchanges)

no cpd00013_e
cpd11594_e was not in model, adding met and exchange reaction
cpd05158_e was not in model, adding met and exchange reaction
cpd15584_e was not in model, adding met and exchange reaction
cpd00492_e was not in model, adding met and exchange reaction
cpd00232_e was not in model, adding met and exchange reaction
cpd19001_e was not in model, adding met and exchange reaction
cpd00709_e was not in model, adding met and exchange reaction
cpd00396_e was not in model, adding met and exchange reaction
cpd01307_e was not in model, adding met and exchange reaction
cpd00079_e was not in model, adding met and exchange reaction
cpd00072_e was not in model, adding met and exchange reaction
cpd00320_e was not in model, adding met and exchange reaction
cpd01293_e was not in model, adding met and exchange reaction
cpd05264_e was not in model, adding met and exchange reaction
cpd03561_e was not in model, adding met and exchange reaction
cpd00094_e was not in model, adding met and exchange reaction
cpd00142_e was not in model, adding met and exchange reaction
cpd00141_e was not in model, adding met and exchange reaction
cpd00029_e was not in model, adding met and exchange reaction

With the input prepared, let’s fill some gaps using the iterative_gapfill_from_binary_phenotypes
function. We will gapfill each ensemble using 10 media conditions and perform the process three times for target
ensemble sizes of 5 members, 25 members, and 100 members. Each ensemble generation step will be repeated 10

32 Chapter 1. Index

medusa Documentation, Release 0.2.0

times with a different random sampling of 10 media conditions (e.g., 10 ensembles of 5 members, 25 members and
100 members will be generated and the mean/standard deviation of construction time will be reported).

In [19]: from medusa.reconstruct.expand import iterative_gapfill_from_binary_phenotypes
import time
import random

num_cycles = 5
lower_bound = 0.05
flux_cutoff = 1E-10

clock_time = {}
clock_time[5] = []
for i in range(0,10):

sample without replacement
media_selection = random.sample(list(media_dicts.keys()),10)
sub_dict = {condition:media_dicts[condition] for condition in media_selection}
time1 = time.time()
ensemble = iterative_gapfill_from_binary_phenotypes(model,universal,sub_dict,num_cycles,\

lower_bound=lower_bound,\
inclusion_threshold=1E-10,\
exchange_reactions=False,\
demand_reactions=False,\
exchange_prefix='EX');

time2 = time.time()
clock_time[5].append(time2-time1)
print("Clock time: " + str(time2-time1))

num_cycles = 25
clock_time[25] = []
for i in range(0,10):

sample without replacement
media_selection = random.sample(list(media_dicts.keys()),10)
sub_dict = {condition:media_dicts[condition] for condition in media_selection}
time1 = time.time()
ensemble = iterative_gapfill_from_binary_phenotypes(model,universal,sub_dict,num_cycles,\

lower_bound=lower_bound,\
inclusion_threshold=1E-10,\
exchange_reactions=False,\
demand_reactions=False,\
exchange_prefix='EX');

time2 = time.time()
clock_time[25].append(time2-time1)
print("Clock time: " + str(time2-time1))

num_cycles = 100
clock_time[100] = []
for i in range(0,10):

sample without replacement
media_selection = random.sample(list(media_dicts.keys()),10)
sub_dict = {condition:media_dicts[condition] for condition in media_selection}
time1 = time.time()
ensemble = iterative_gapfill_from_binary_phenotypes(model,universal,sub_dict,num_cycles,\

lower_bound=lower_bound,\
inclusion_threshold=1E-10,\
exchange_reactions=False,\
demand_reactions=False,\
exchange_prefix='EX');

time2 = time.time()

1.12. Benchmarking ensemble generation 33

medusa Documentation, Release 0.2.0

clock_time[100].append(time2-time1)
print("Clock time: " + str(time2-time1))

Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 97.85026526451111
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 106.4863657951355
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 119.81539511680603
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 97.87515687942505
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 107.44688296318054
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 97.99315094947815
Constraining lower bound for bio1
starting cycle number 0

34 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 110.61738395690918
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 111.50042414665222
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 128.1014850139618
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
building features...
updating members...
Clock time: 95.986576795578
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23

1.12. Benchmarking ensemble generation 35

medusa Documentation, Release 0.2.0

starting cycle number 24
building features...
updating members...
Clock time: 267.31880497932434
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...
Clock time: 381.626629114151
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24

36 Chapter 1. Index

medusa Documentation, Release 0.2.0

building features...
updating members...
Clock time: 279.64290976524353
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...
Clock time: 266.1675601005554
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...

1.12. Benchmarking ensemble generation 37

medusa Documentation, Release 0.2.0

updating members...
Clock time: 270.17031383514404
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...
Clock time: 253.3940167427063
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...

38 Chapter 1. Index

medusa Documentation, Release 0.2.0

Clock time: 389.7195827960968
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...
Clock time: 380.86448097229004
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...
Clock time: 271.53583908081055

1.12. Benchmarking ensemble generation 39

medusa Documentation, Release 0.2.0

Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
building features...
updating members...
Clock time: 435.9781460762024
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28

40 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87

1.12. Benchmarking ensemble generation 41

medusa Documentation, Release 0.2.0

starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 998.9393928050995
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42

42 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...

1.12. Benchmarking ensemble generation 43

medusa Documentation, Release 0.2.0

Clock time: 1333.905808210373
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56

44 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 1008.801106929779
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11

1.12. Benchmarking ensemble generation 45

medusa Documentation, Release 0.2.0

starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70

46 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 938.9039621353149
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25

1.12. Benchmarking ensemble generation 47

medusa Documentation, Release 0.2.0

starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84

48 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 1012.624204158783
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39

1.12. Benchmarking ensemble generation 49

medusa Documentation, Release 0.2.0

starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98

50 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 99
building features...
updating members...
Clock time: 957.0066258907318
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53

1.12. Benchmarking ensemble generation 51

medusa Documentation, Release 0.2.0

starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 1158.7237539291382
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8

52 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67

1.12. Benchmarking ensemble generation 53

medusa Documentation, Release 0.2.0

starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 1412.2274470329285
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22

54 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36
starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81

1.12. Benchmarking ensemble generation 55

medusa Documentation, Release 0.2.0

starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95
starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 1309.229562997818
Constraining lower bound for bio1
starting cycle number 0
starting cycle number 1
starting cycle number 2
starting cycle number 3
starting cycle number 4
starting cycle number 5
starting cycle number 6
starting cycle number 7
starting cycle number 8
starting cycle number 9
starting cycle number 10
starting cycle number 11
starting cycle number 12
starting cycle number 13
starting cycle number 14
starting cycle number 15
starting cycle number 16
starting cycle number 17
starting cycle number 18
starting cycle number 19
starting cycle number 20
starting cycle number 21
starting cycle number 22
starting cycle number 23
starting cycle number 24
starting cycle number 25
starting cycle number 26
starting cycle number 27
starting cycle number 28
starting cycle number 29
starting cycle number 30
starting cycle number 31
starting cycle number 32
starting cycle number 33
starting cycle number 34
starting cycle number 35
starting cycle number 36

56 Chapter 1. Index

medusa Documentation, Release 0.2.0

starting cycle number 37
starting cycle number 38
starting cycle number 39
starting cycle number 40
starting cycle number 41
starting cycle number 42
starting cycle number 43
starting cycle number 44
starting cycle number 45
starting cycle number 46
starting cycle number 47
starting cycle number 48
starting cycle number 49
starting cycle number 50
starting cycle number 51
starting cycle number 52
starting cycle number 53
starting cycle number 54
starting cycle number 55
starting cycle number 56
starting cycle number 57
starting cycle number 58
starting cycle number 59
starting cycle number 60
starting cycle number 61
starting cycle number 62
starting cycle number 63
starting cycle number 64
starting cycle number 65
starting cycle number 66
starting cycle number 67
starting cycle number 68
starting cycle number 69
starting cycle number 70
starting cycle number 71
starting cycle number 72
starting cycle number 73
starting cycle number 74
starting cycle number 75
starting cycle number 76
starting cycle number 77
starting cycle number 78
starting cycle number 79
starting cycle number 80
starting cycle number 81
starting cycle number 82
starting cycle number 83
starting cycle number 84
starting cycle number 85
starting cycle number 86
starting cycle number 87
starting cycle number 88
starting cycle number 89
starting cycle number 90
starting cycle number 91
starting cycle number 92
starting cycle number 93
starting cycle number 94
starting cycle number 95

1.12. Benchmarking ensemble generation 57

medusa Documentation, Release 0.2.0

starting cycle number 96
starting cycle number 97
starting cycle number 98
starting cycle number 99
building features...
updating members...
Clock time: 1040.6910407543182

In [61]: import matplotlib.pylab as plt
import numpy as np
fig,ax = plt.subplots()
clock_time_as_min = {t:[ti/60.0 for ti in clock_time[t]] for t in clock_time.keys()}
x = list(clock_time_as_min.keys())
x.sort()
ax.bar(x=[1,2,3],height=[np.mean(clock_time_as_min[time]) for time in x],

yerr=[np.std(clock_time_as_min[time]) for time in x],
capsize=10,alpha=0.6)

ax.set_xlabel('Ensemble members',size=16)
ax.set_ylabel('Ensemble construction time (min)',size=16)
ax.tick_params(axis='both', which='major', labelsize=12)
ax.tick_params(axis='both', which='minor', labelsize=12)
ax.set(xticks=[1,2,3])
ax.set_xticklabels(labels=x)
plt.savefig('benchmark_iter_gapfill.svg')

In [63]: # what are the mean values?
[np.mean(clock_time_as_min[time]) for time in x]

Out[63]: [1.789455144802729, 5.327363805770874, 18.61842150807381]

As you can see, ensemble size and construction time are fairly proportional. There is a large amount of time spent
copying the universal model, so contructing the small 5-member ensemble takes longer than one might expect. A

58 Chapter 1. Index

medusa Documentation, Release 0.2.0

larger universal model will take longer to copy, and each gapfilling step will take longer if more media conditions are
included.

1.13 FAQ

In [1]: import medusa

1.14 Sphinx AutoAPI Index

This page is the top-level of your generated API documentation. Below is a list of all items that are documented here.

1.14.1 medusa

Subpackages

medusa.core

Submodules

medusa.core.ensemble

Module Contents

medusa.core.ensemble.REACTION_ATTRIBUTES = ['lower_bound', 'upper_bound']

medusa.core.ensemble.MISSING_ATTRIBUTE_DEFAULT

class medusa.core.ensemble.Ensemble(list_of_models=[], identifier=None, name=None)
Bases:cobra.core.object.Object

Ensemble of metabolic models

Parameters

• identifier (string) – The identifier to associate with the ensemble as a string.

• list_of_models (list of cobra.core.model.Model) – Either a list of exist-
ing Model objects in which case a new Model object is instantiated and an ensemble is
constructed using the list of Models, or None/empty list, in which case an ensemble is cre-
ated with empty attributes.

• name (string) – Human-readable name for the ensemble

base_model
A cobra.core.Model that contains all variable and invariable components of an ensemble.

Type Model

members
A DictList where the key is the member identifier and the value is a medusa.core.member.Member object

Type DictList

1.13. FAQ 59

medusa Documentation, Release 0.2.0

features
A DictList where the key is the feature identifier and the value is a medusa.core.feature.Feature object

Type DictList

_populate_features_base(self, list_of_models)

_populate_members(self, list_of_models)

set_state(self, member)
Set the state of the base model to represent a single member.

Sets all features to the state for the provided member. Only reaction states are currently implemented (e.g.
GPRs as features will not work)

Parameters member (str or medusa.Member) – The Member.id, or the Member object
itself, to set the state of the Ensemble.base_model to represent.

to_pickle(self, filename)
Save an ensemble as a pickled object. Pickling is currently the only supported method for saving and
loading ensembles.

Parameters filename (String) – location to save the pickle.

extract_member(self, member)
Extract an individual member as a cobrapy model (cobra.Model), removing any components associated
with features that are inactive in member.

Provided as a more convenient option than medusa.Member.to_model(), but is the exact same.

Parameters member (str or medusa.Member) – The Member.id, or the Member object
itself, to be represented in the cobrapy model output.

Returns model – The extracted member as a cobrapy model.

Return type cobra.Model

medusa.core.feature

Module Contents

class medusa.core.feature.Feature(identifier=None, name=None, ensemble=None,
base_component=None, component_attribute=None,
states=None)

Bases:cobra.core.object.Object

Feature describing a network component that varies across an ensemble.

Parameters

• identifier (string) – The identifier to associate with the feature. Convention is to
append the component_attribute to the base_component’s id.

• ensemble (medusa.core.ensemble.Ensemble object) – The ensemble that
the feature is associated with.

• base_component (cobra.core.reaction.Reaction) – Reference to the Reac-
tion object that the feature describes.

• component_attribute (string) – string indicating the attribute of base_component
that the feature describes the modification of (e.g. “lb”, “ub”)

60 Chapter 1. Index

medusa Documentation, Release 0.2.0

• states (dictionary of string:component_attribute value) – dictio-
nary of model ids mapping to the value of the Feature’s component_attribute (value type
depends on component_attribute type, e.g. float for “lb”, string for “_gene_reaction_rule”)

get_model_state(self, member_id)
Get the state of the feature for a particular member

medusa.core.member

Module Contents

class medusa.core.member.Member(ensemble=None, identifier=None, name=None, states=None)
Bases:cobra.core.object.Object

Object representing an individual member (i.e. model) in an ensemble

Parameters

• identifier (string) – The identifier to associate with the member.

• ensemble (medusa.core.ensemble.Ensemble object) – The ensemble that
the member belongs to.

• states (dictionary of medusa.core.feature.
Feature:component_attribute value) – dictionary of Features mapping to the
value of the Feature’s component_attribute (value type depends on component_attribute
type, e.g. float for “lb”, string for “_gene_reaction_rule”) for the member.

to_model(self)
Generate a cobra.Model object with the exact state of this member.

The resulting cobra.Model does not contain any Metabolites, Genes, or Reactions that were inactive in the
member.

Returns model – The extracted member as a cobrapy model.

Return type cobra.Model

_set_id_with_model(self, value)

Package Contents

class medusa.core.Ensemble(list_of_models=[], identifier=None, name=None)
Bases:cobra.core.object.Object

Ensemble of metabolic models

Parameters

• identifier (string) – The identifier to associate with the ensemble as a string.

• list_of_models (list of cobra.core.model.Model) – Either a list of exist-
ing Model objects in which case a new Model object is instantiated and an ensemble is
constructed using the list of Models, or None/empty list, in which case an ensemble is cre-
ated with empty attributes.

• name (string) – Human-readable name for the ensemble

base_model
A cobra.core.Model that contains all variable and invariable components of an ensemble.

1.14. Sphinx AutoAPI Index 61

medusa Documentation, Release 0.2.0

Type Model

members
A DictList where the key is the member identifier and the value is a medusa.core.member.Member object

Type DictList

features
A DictList where the key is the feature identifier and the value is a medusa.core.feature.Feature object

Type DictList

_populate_features_base(self, list_of_models)

_populate_members(self, list_of_models)

set_state(self, member)
Set the state of the base model to represent a single member.

Sets all features to the state for the provided member. Only reaction states are currently implemented (e.g.
GPRs as features will not work)

Parameters member (str or medusa.Member) – The Member.id, or the Member object
itself, to set the state of the Ensemble.base_model to represent.

to_pickle(self, filename)
Save an ensemble as a pickled object. Pickling is currently the only supported method for saving and
loading ensembles.

Parameters filename (String) – location to save the pickle.

extract_member(self, member)
Extract an individual member as a cobrapy model (cobra.Model), removing any components associated
with features that are inactive in member.

Provided as a more convenient option than medusa.Member.to_model(), but is the exact same.

Parameters member (str or medusa.Member) – The Member.id, or the Member object
itself, to be represented in the cobrapy model output.

Returns model – The extracted member as a cobrapy model.

Return type cobra.Model

class medusa.core.Feature(identifier=None, name=None, ensemble=None,
base_component=None, component_attribute=None, states=None)

Bases:cobra.core.object.Object

Feature describing a network component that varies across an ensemble.

Parameters

• identifier (string) – The identifier to associate with the feature. Convention is to
append the component_attribute to the base_component’s id.

• ensemble (medusa.core.ensemble.Ensemble object) – The ensemble that
the feature is associated with.

• base_component (cobra.core.reaction.Reaction) – Reference to the Reac-
tion object that the feature describes.

• component_attribute (string) – string indicating the attribute of base_component
that the feature describes the modification of (e.g. “lb”, “ub”)

62 Chapter 1. Index

medusa Documentation, Release 0.2.0

• states (dictionary of string:component_attribute value) – dictio-
nary of model ids mapping to the value of the Feature’s component_attribute (value type
depends on component_attribute type, e.g. float for “lb”, string for “_gene_reaction_rule”)

get_model_state(self, member_id)
Get the state of the feature for a particular member

class medusa.core.Member(ensemble=None, identifier=None, name=None, states=None)
Bases:cobra.core.object.Object

Object representing an individual member (i.e. model) in an ensemble

Parameters

• identifier (string) – The identifier to associate with the member.

• ensemble (medusa.core.ensemble.Ensemble object) – The ensemble that
the member belongs to.

• states (dictionary of medusa.core.feature.
Feature:component_attribute value) – dictionary of Features mapping to the
value of the Feature’s component_attribute (value type depends on component_attribute
type, e.g. float for “lb”, string for “_gene_reaction_rule”) for the member.

to_model(self)
Generate a cobra.Model object with the exact state of this member.

The resulting cobra.Model does not contain any Metabolites, Genes, or Reactions that were inactive in the
member.

Returns model – The extracted member as a cobrapy model.

Return type cobra.Model

_set_id_with_model(self, value)

medusa.flux_analysis

Submodules

medusa.flux_analysis.deletion

Module Contents

medusa.flux_analysis.deletion.ensemble_single_reaction_deletion(ensemble,
num_models=None,
spe-
cific_models=[])

Performs single reaction deletions on models within an ensemble and returns the objective value after optimiza-
tion with each reaction removed.

Parameters

• ensemble (medusa.core.Ensemble) – The ensemble with which to perform reaction
deletions

• num_models (int, optional) – Number of models for which reaction deletions will
be performed. The number of models indicated will be randomly sampled and reaction
deletions will be performed on the sampled models. If None, all models will be selected

1.14. Sphinx AutoAPI Index 63

medusa Documentation, Release 0.2.0

(default), or the models specified by specific_models will be selected. Cannot be passed
concurrently with specific_models.

• specific_models (list of str, optional) – List of member.id corresponding
to the models for which reaction deletions will be performed. If None, all models will be
selected (default), or num_models will be randomly sampled and selected. Cannot be passed
concurrently with num_models.

Returns A dataframe in which each row (index) represents a model within the ensemble, and each
column represents a reaction for which values of objective when the reaction is deleted are
returned.

Return type pandas.DataFrame

medusa.flux_analysis.deletion.ensemble_single_gene_deletion(ensemble,
num_models=None,
specific_models=[],
specific_genes=[])

Performs single reaction deletions on models within an ensemble and returns the objective value after optimiza-
tion with each reaction removed.

Parameters

• ensemble (medusa.core.Ensemble) – The ensemble with which to perform reaction
deletions

• num_models (int, optional) – Number of models for which reaction deletions will
be performed. The number of models indicated will be randomly sampled and reaction
deletions will be performed on the sampled models. If None, all models will be selected
(default), or the models specified by specific_models will be selected. Cannot be passed
concurrently with specific_models.

• specific_models (list of str, optional) – List of member.id corresponding
to the models for which reaction deletions will be performed. If None, all models will be
selected (default), or num_models will be randomly sampled and selected. Cannot be passed
concurrently with num_models.

• specific_genes (list of str, optionsl) – List of gene.id corresponding to
the genes for which deletions should be performed. If none, all genes will be selected
(default). We recommend identifying genes that are essential in all ensemble members first,
then excluding those genes from specific_genes. This will generally speed up computation.

Returns A dataframe in which each row (index) represents a model within the ensemble, and each
column represents a reaction for which values of objective when the reaction is deleted are
returned.

Return type pandas.DataFrame

medusa.flux_analysis.flux_balance

Module Contents

medusa.flux_analysis.flux_balance._optimize_ensemble(ensemble, return_flux, mem-
ber_id, **kwargs)

medusa.flux_analysis.flux_balance._optimize_ensemble_worker(member_id)

medusa.flux_analysis.flux_balance._init_worker(ensemble, return_flux)

64 Chapter 1. Index

medusa Documentation, Release 0.2.0

medusa.flux_analysis.flux_balance.optimize_ensemble(ensemble, return_flux=None,
num_models=None, spe-
cific_models=None,
num_processes=None,
**kwargs)

Performs flux balance analysis (FBA) on models within an ensemble.

Parameters

• ensemble (medusa.core.Ensemble) – The ensemble on which FBA is to be per-
formed.

• return_flux (str or list of str, optional) – List of reaction ids (co-
bra.core.reaction.id), or a single reaction id, for which to return flux values. If None, all
reaction fluxes are returned (default).

• num_models (int, optional) – Number of models for which FBA will be performed.
The number of models indicated will be randomly sampled and FBA will be performed on
the sampled models. If None, all models will be selected (default), or the models specified
by specific_models will be selected. Cannot be passed concurrently with specific_models.

• specific_models (list of str, optional) – List of ensemble_member.id cor-
responding to the models for which FBA will be performed. If None, all models will be se-
lected (default), or num_models will be randomly sampled and selected. Cannot be passed
concurrently with num_models.

• num_processes (int, optional) – An integer corresponding to the number of pro-
cesses (i.e. cores) to use. Using more cores will speed up computation, but will have a
larger memory footprint because the ensemble object must be temporarily copied for each
additional core used. If None, one core is used.

Returns A dataframe in which each row (index) represents a model within the ensemble, and each
column represents a reaction for which flux values are returned.

Return type pandas.DataFrame

medusa.flux_analysis.variability

Module Contents

medusa.flux_analysis.variability.ensemble_fva(ensemble, reaction_list, num_models=[],
specific_models=None, frac-
tion_of_optimum=1.0, loopless=False,
**solver_args)

Performs FVA on num_models. If num_models is not passed, performs FVA on every model in the ensemble.
If the model is a community model, num_models must be passed.

Performs flux variability analysis (FVA) on models within an ensemble.

Parameters

• ensemble (medusa.core.Ensemble) – The ensemble on which FVA is to be per-
formed.

• reaction_list (str or list of str, optional) – List of reaction ids (co-
bra.core.reaction.id), or a single reaction id, for which to return flux ranges. If None, all
reaction fluxes are returned (default).

1.14. Sphinx AutoAPI Index 65

medusa Documentation, Release 0.2.0

• num_models (int, optional) – Number of models for which FVA will be performed.
The number of models indicated will be randomly sampled and FVA will be performed on
the sampled models. If None, all models will be selected (default), or the models specified
by specific_models will be selected. Cannot be passed concurrently with specific_models.

• specific_models (list of str, optional) – List of ensemble_member.id cor-
responding to the models for which FVA will be performed. If None, all models will be se-
lected (default), or num_models will be randomly sampled and selected. Cannot be passed
concurrently with num_models.

• fraction_of_optimum (float, optional) – fraction of the optimum objective
value, set as a constraint such that the objective never falls below the provided fraction
when assessing variability of each reaction.

• loopless (boolean, optional) – Whether or not to perform loopless FVA. This is
much slower. See cobrapy.flux_analysis.variability for details.

Returns A dataframe in which each row (index) represents a model within the ensemble and the
lower or upper value of flux ranges, and each column represents a reaction and its lower or
upper value of its flux range. Based on this formatting, each model is present in two rows, one
of which contains the lower flux value and the other of which contains the upper flux value.

Return type pandas.DataFrame

medusa.quality

Submodules

medusa.quality.mass_balance

Module Contents

medusa.quality.mass_balance.leak_test(ensemble, metabolites_to_test=[], ex-
change_prefix=’EX_’, verbose=False,
num_models=[], **kwargs)

Checks for leaky metabolites in every member of the ensemble by opening and optimizing a demand reaction
while all exchange reactions are closed.

By default, checks for leaks for every metabolite for all models.

medusa.reconstruct

Submodules

medusa.reconstruct.degrade

Module Contents

medusa.reconstruct.degrade.degrade_reactions(base_model, num_reactions,
num_models=10)

Removes reactions from an existing COBRA model to generate an ensemble.

Parameters

66 Chapter 1. Index

medusa Documentation, Release 0.2.0

• base_model (cobra.Model) – Model from which reactions will be removed to create
an ensemble.

• num_reactions (int) – The number of reactions to remove to generate each ensemble
member. Must be smaller than the total number of reactions in the model

• num_models (int) – The number of models to generate by randomly removing
num_reactions from the base_model. Reactions are removed with replacement.

Returns An ensemble

Return type Medusa.core.ensemble

medusa.reconstruct.expand

Module Contents

medusa.reconstruct.expand.REACTION_ATTRIBUTES = ['lower_bound', 'upper_bound']

medusa.reconstruct.expand.MISSING_ATTRIBUTE_DEFAULT

medusa.reconstruct.expand.gapfill_to_ensemble(model, iterations=1, univer-
sal=None, lower_bound=0.05, penal-
ties=None, exchange_reactions=False,
demand_reactions=False,
integer_threshold=1e-06)

Performs gapfilling on model, pulling reactions from universal. Any existing constraints on base_model are
maintained during gapfilling, so these should be set before calling gapfill_to_ensemble (e.g. secretion of metabo-
lites, choice of objective function etc.).

Currently, only iterative solutions are supported with accumulating penalties (i.e. after each iteration, the penalty
for each reaction doubles).

Parameters

• model (cobra.Model) – The model to perform gap filling on.

• universal (cobra.Model) – A universal model with reactions that can be used to
complete the model.

• lower_bound (float, 0.05) – The minimally accepted flux for the objective in the
filled model.

• penalties (dict, None) – A dictionary with keys being ‘universal’ (all reactions in-
cluded in the universal model), ‘exchange’ and ‘demand’ (all additionally added exchange
and demand reactions) for the three reaction types. Can also have reaction identifiers for
reaction specific costs. Defaults are 1, 100 and 1 respectively.

• integer_threshold (float, 1e-6) – The threshold at which a value is considered
non-zero (aka integrality threshold). If gapfilled models fail to validate, you may want to
lower this value. However, picking a threshold that is too low may also result in reactions
being added that are not essential to meet the imposed constraints.

• exchange_reactions (bool, False) – Consider adding exchange (uptake) reac-
tions for all metabolites in the model.

• demand_reactions (bool, False) – Consider adding demand reactions for all
metabolites.

Returns ensemble – The ensemble object created from the gapfill solutions.

1.14. Sphinx AutoAPI Index 67

medusa Documentation, Release 0.2.0

Return type medusa.core.Ensemble

medusa.reconstruct.expand.iterative_gapfill_from_binary_phenotypes(model,
universal,
pheno-
type_dict,
out-
put_ensemble_size,
gap-
fill_type=’continuous’,
itera-
tions_per_condition=1,
lower_bound=0.05,
penal-
ties=None,
ex-
change_reactions=False,
de-
mand_reactions=False,
inclusion_threshold=1e-
06, ex-
change_prefix=’EX_’)

Performs gapfilling on model, pulling reactions from universal. Any existing constraints on base_model are
maintained during gapfilling, so these should be set before calling gapfill_to_ensemble (e.g. secretion of metabo-
lites, choice of objective function etc.).

Cycles through each key:value pair in phenotype_dict, iterating over every condition and performing gapfilling
on that condition until the number of cycles over all conditions is equal to output_ensemble_size. For each
cycle, the order of conditions is randomized, which generally leads to unique sets of solutions for each cycle.

Currently only supports a single iteration for each condition within each cycle (i.e. for each gapfill in a single
condition, only one solution is returned). Currently only supports gapfilling to positive growth conditions.

Generally, solutions are easier to find and more likely to exist if users ensure that transporters for metabolites
exist in the model already or at minimum are present in the universal model.

Parameters

• model (cobra.Model) – The model to perform gap filling on.

• universal (cobra.Model) – A universal model with reactions that can be used to
complete the model.

• phenotype_dict (dict) – A dictionary of condition_name:media_dict, where con-
dition name is a unique string describing the condition (such as the name of a single
carbon source) and media_dict is a dictionary of exchange reactions to bounds, as set
in cobra.core.model.medium. Exchange reactions are provided with reaction.id, not co-
bra.core.reaction objects.

• output_ensemble_size (int) – Number of cycles over all conditions provided to
perform. Equal to the number of lists returned in ‘solutions’. When the ensemble is con-
structed, the number of members may be lower than output_ensemble_size if any duplicate
solutions were found across cycles.

• iterations_per_condition (int, 1) – The number of gapfill solutions to return
in each condition within each cycle. Currently only supports returning a single solution.

• lower_bound (float, 0.05) – The minimally accepted flux for the objective in the
filled model.

68 Chapter 1. Index

medusa Documentation, Release 0.2.0

• penalties (dict, None) – A dictionary with keys being ‘universal’ (all reactions in-
cluded in the universal model), ‘exchange’ and ‘demand’ (all additionally added exchange
and demand reactions) for the three reaction types. Can also have reaction identifiers for
reaction specific costs. Defaults are 1, 100 and 1 respectively.

• inclusion_threshold (float, 1e-6) – The threshold at which a value is consid-
ered non-zero (aka integrality threshold in the integer formulation, or the flux threshold in
the continuous formulation). If gapfilled models fail to validate, you may want to lower this
valu. However, picking a threshold that is too low may also result in reactions being added
that are not essential to meet the imposed constraints.

• exchange_reactions (bool, False) – Consider adding exchange (uptake) reac-
tions for all metabolites in the model.

• demand_reactions (bool, False) – Consider adding demand reactions for all
metabolites.

• exchange_prefix (string, “EX_”) – the default reaction ID prefix to search for when
identifying exchange reactions. “EX_” is standard for modelSEED models. This will be
updated to be more database-agnostic when cobrapy boundary determination is finalized for
cobrapy version 1.0.

Returns solutions – list of lists; each list contains a gapfill solution for a single cycle. Number of
lists is equal to output_ensemble_size.

Return type list

medusa.reconstruct.expand._continuous_iterative_binary_gapfill(model, phe-
notype_dict,
cycle_order,
univer-
sal=None, out-
put_ensemble_size=1,
lower_bound=0.05,
penal-
ties=None, de-
mand_reactions=False,
ex-
change_reactions=False,
flux_cutoff=1e-
08, ex-
change_prefix=’EX_’)

medusa.reconstruct.expand._integer_iterative_binary_gapfill(model, pheno-
type_dict, cy-
cle_order, uni-
versal=None, out-
put_ensemble_size=0,
lower_bound=0.05,
penalties=False, de-
mand_reactions=False,
ex-
change_reactions=False,
integer_threshold=1e-
06)

medusa.reconstruct.expand._build_ensemble_from_gapfill_solutions(model, solu-
tions, univer-
sal=None)

1.14. Sphinx AutoAPI Index 69

medusa Documentation, Release 0.2.0

medusa.reconstruct.expand.validate(original_model, reactions, lower_bound)

medusa.reconstruct.load_from_file

Module Contents

medusa.reconstruct.load_from_file.parent_attr_of_base_component(base_comp)
Output a string to indicate the parent attribute of the cobra.core object.

Parameters base_comp (cobra.core object) – Ensemble base_component of feature. i.e.
cobra reaction, metabolite, or gene

medusa.reconstruct.load_from_file.batch_load_from_files(model_file_names, iden-
tifier=’ensemble’, batch-
size=5, verbose=False)

Loads a list of models my file name in batches to and generates an ensemble object. This function is meant to
be used to limit how much flash memory is required to generate very large ensembles.

Parameters

• model_jsons (List) – List of json cobra.model file names.

• batchsize (Integer) – Total number of models loaded into memory.

medusa.reconstruct.load_from_file.add_ensembles(e1, e2, verbose=False)
Adds two ensemble objects together.

Parameters & e2 (e1) – Generated using medusa.core.Ensemble()

medusa.test

Submodules

medusa.test.test_ensemble

Module Contents

medusa.test.test_ensemble.REACTION_ATTRIBUTES = ['lower_bound', 'upper_bound']

medusa.test.test_ensemble.MISSING_ATTRIBUTE_DEFAULT

medusa.test.test_ensemble.construct_textbook_ensemble()

medusa.test.test_ensemble.construct_mixed_ensemble()

medusa.test.test_ensemble.test_ensemble_creation()

medusa.test.test_ensemble.test_mixed_ensemble_creation()

medusa.test.test_ensemble.test_extract_member()

medusa.test.test_ensemble.test_update_member_id()

medusa.test.test_ensemble.test_pickle()

70 Chapter 1. Index

medusa Documentation, Release 0.2.0

medusa.test.test_flux_balance

Module Contents

medusa.test.test_flux_balance.construct_textbook_ensemble()

medusa.test.test_flux_balance.construct_mixed_ensemble()

medusa.test.test_flux_balance.test_fba_return_dims()

medusa.test.test_flux_balance.test_fba_multiprocessing()

medusa.test.test_flux_balance.test_fba_single_return()

medusa.test.test_flux_balance.test_fba_random_sample()

medusa.test.test_flux_balance.test_fba_specific_models()

medusa.test.test_load_from_file

Module Contents

medusa.test.test_load_from_file.REACTION_ATTRIBUTES = ['lower_bound', 'upper_bound']

medusa.test.test_load_from_file.MISSING_ATTRIBUTE_DEFAULT

medusa.test.test_load_from_file.construct_mixed_ensemble_2()

medusa.test.test_load_from_file.construct_mixed_batch_ensemble()

medusa.test.test_load_from_file.test_batch_load_vs_innate()

medusa.test.test_load_from_file.test_all_attributes_in_batch_load_model()

medusa.test.test_reconstruct

Module Contents

medusa.test.test_reconstruct.REACTION_ATTRIBUTES = ['lower_bound', 'upper_bound']

medusa.test.test_reconstruct.MISSING_ATTRIBUTE_DEFAULT

medusa.test.test_reconstruct.test_iterative_gapfill_from_binary_phenotypes()

medusa.test.test_reconstruct.load_universal_modelseed()

medusa.test.test_reconstruct.load_modelseed_model(model_name)

medusa.test.test_variability

Module Contents

medusa.test.test_variability.construct_textbook_ensemble()

medusa.test.test_variability.test_fva_return_dims()

1.14. Sphinx AutoAPI Index 71

medusa Documentation, Release 0.2.0

Package Contents

class medusa.test.Ensemble(list_of_models=[], identifier=None, name=None)
Bases:cobra.core.object.Object

Ensemble of metabolic models

Parameters

• identifier (string) – The identifier to associate with the ensemble as a string.

• list_of_models (list of cobra.core.model.Model) – Either a list of exist-
ing Model objects in which case a new Model object is instantiated and an ensemble is
constructed using the list of Models, or None/empty list, in which case an ensemble is cre-
ated with empty attributes.

• name (string) – Human-readable name for the ensemble

base_model
A cobra.core.Model that contains all variable and invariable components of an ensemble.

Type Model

members
A DictList where the key is the member identifier and the value is a medusa.core.member.Member object

Type DictList

features
A DictList where the key is the feature identifier and the value is a medusa.core.feature.Feature object

Type DictList

_populate_features_base(self, list_of_models)

_populate_members(self, list_of_models)

set_state(self, member)
Set the state of the base model to represent a single member.

Sets all features to the state for the provided member. Only reaction states are currently implemented (e.g.
GPRs as features will not work)

Parameters member (str or medusa.Member) – The Member.id, or the Member object
itself, to set the state of the Ensemble.base_model to represent.

to_pickle(self, filename)
Save an ensemble as a pickled object. Pickling is currently the only supported method for saving and
loading ensembles.

Parameters filename (String) – location to save the pickle.

extract_member(self, member)
Extract an individual member as a cobrapy model (cobra.Model), removing any components associated
with features that are inactive in member.

Provided as a more convenient option than medusa.Member.to_model(), but is the exact same.

Parameters member (str or medusa.Member) – The Member.id, or the Member object
itself, to be represented in the cobrapy model output.

Returns model – The extracted member as a cobrapy model.

Return type cobra.Model

medusa.test.medusa_directory

72 Chapter 1. Index

medusa Documentation, Release 0.2.0

medusa.test.data_dir

medusa.test.create_test_ensemble(ensemble_name=’Staphylococcus aureus’)
Returns a previously-generated ensemble for testing model_name: str

One of ‘Staphylococcus_aureus_ensemble’

medusa.test.create_test_model(model_name=’textbook’)
Returns a cobra.Model for testing model_name: str

One of [‘Staphylococcus aureus’] or any models in cobra.test

medusa.test.load_biolog_plata()

medusa.test.load_universal_modelseed()

Package Contents

medusa.__version__ = 0.1

1.14. Sphinx AutoAPI Index 73

medusa Documentation, Release 0.2.0

74 Chapter 1. Index

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

75

medusa Documentation, Release 0.2.0

76 Chapter 2. Indices and tables

Python Module Index

m
medusa, 59
medusa.core, 59
medusa.core.ensemble, 59
medusa.core.feature, 60
medusa.core.member, 61
medusa.flux_analysis, 63
medusa.flux_analysis.deletion, 63
medusa.flux_analysis.flux_balance, 64
medusa.flux_analysis.variability, 65
medusa.quality, 66
medusa.quality.mass_balance, 66
medusa.reconstruct, 66
medusa.reconstruct.degrade, 66
medusa.reconstruct.expand, 67
medusa.reconstruct.load_from_file, 70
medusa.test, 70
medusa.test.test_ensemble, 70
medusa.test.test_flux_balance, 71
medusa.test.test_load_from_file, 71
medusa.test.test_reconstruct, 71
medusa.test.test_variability, 71

77

medusa Documentation, Release 0.2.0

78 Python Module Index

Index

Symbols
__version__ (in module medusa), 73
_build_ensemble_from_gapfill_solutions()

(in module medusa.reconstruct.expand), 69
_continuous_iterative_binary_gapfill()

(in module medusa.reconstruct.expand), 69
_init_worker() (in module

medusa.flux_analysis.flux_balance), 64
_integer_iterative_binary_gapfill() (in

module medusa.reconstruct.expand), 69
_optimize_ensemble() (in module

medusa.flux_analysis.flux_balance), 64
_optimize_ensemble_worker() (in module

medusa.flux_analysis.flux_balance), 64
_populate_features_base()

(medusa.core.Ensemble method), 62
_populate_features_base()

(medusa.core.ensemble.Ensemble method),
60

_populate_features_base()
(medusa.test.Ensemble method), 72

_populate_members() (medusa.core.Ensemble
method), 62

_populate_members()
(medusa.core.ensemble.Ensemble method),
60

_populate_members() (medusa.test.Ensemble
method), 72

_set_id_with_model() (medusa.core.Member
method), 63

_set_id_with_model()
(medusa.core.member.Member method),
61

A
add_ensembles() (in module

medusa.reconstruct.load_from_file), 70

B
base_model (medusa.core.Ensemble attribute), 61

base_model (medusa.core.ensemble.Ensemble at-
tribute), 59

base_model (medusa.test.Ensemble attribute), 72
batch_load_from_files() (in module

medusa.reconstruct.load_from_file), 70

C
construct_mixed_batch_ensemble() (in mod-

ule medusa.test.test_load_from_file), 71
construct_mixed_ensemble() (in module

medusa.test.test_ensemble), 70
construct_mixed_ensemble() (in module

medusa.test.test_flux_balance), 71
construct_mixed_ensemble_2() (in module

medusa.test.test_load_from_file), 71
construct_textbook_ensemble() (in module

medusa.test.test_ensemble), 70
construct_textbook_ensemble() (in module

medusa.test.test_flux_balance), 71
construct_textbook_ensemble() (in module

medusa.test.test_variability), 71
create_test_ensemble() (in module

medusa.test), 73
create_test_model() (in module medusa.test), 73

D
data_dir (in module medusa.test), 73
degrade_reactions() (in module

medusa.reconstruct.degrade), 66

E
Ensemble (class in medusa.core), 61
Ensemble (class in medusa.core.ensemble), 59
Ensemble (class in medusa.test), 72
ensemble_fva() (in module

medusa.flux_analysis.variability), 65
ensemble_single_gene_deletion() (in mod-

ule medusa.flux_analysis.deletion), 64
ensemble_single_reaction_deletion() (in

module medusa.flux_analysis.deletion), 63

79

medusa Documentation, Release 0.2.0

extract_member() (medusa.core.Ensemble
method), 62

extract_member() (medusa.core.ensemble.Ensemble
method), 60

extract_member() (medusa.test.Ensemble method),
72

F
Feature (class in medusa.core), 62
Feature (class in medusa.core.feature), 60
features (medusa.core.Ensemble attribute), 62
features (medusa.core.ensemble.Ensemble attribute),

59
features (medusa.test.Ensemble attribute), 72

G
gapfill_to_ensemble() (in module

medusa.reconstruct.expand), 67
get_model_state() (medusa.core.Feature method),

63
get_model_state() (medusa.core.feature.Feature

method), 61

I
iterative_gapfill_from_binary_phenotypes()

(in module medusa.reconstruct.expand), 68

L
leak_test() (in module

medusa.quality.mass_balance), 66
load_biolog_plata() (in module medusa.test), 73
load_modelseed_model() (in module

medusa.test.test_reconstruct), 71
load_universal_modelseed() (in module

medusa.test), 73
load_universal_modelseed() (in module

medusa.test.test_reconstruct), 71

M
medusa (module), 59
medusa.core (module), 59
medusa.core.ensemble (module), 59
medusa.core.feature (module), 60
medusa.core.member (module), 61
medusa.flux_analysis (module), 63
medusa.flux_analysis.deletion (module), 63
medusa.flux_analysis.flux_balance (mod-

ule), 64
medusa.flux_analysis.variability (mod-

ule), 65
medusa.quality (module), 66
medusa.quality.mass_balance (module), 66
medusa.reconstruct (module), 66

medusa.reconstruct.degrade (module), 66
medusa.reconstruct.expand (module), 67
medusa.reconstruct.load_from_file (mod-

ule), 70
medusa.test (module), 70
medusa.test.test_ensemble (module), 70
medusa.test.test_flux_balance (module), 71
medusa.test.test_load_from_file (module),

71
medusa.test.test_reconstruct (module), 71
medusa.test.test_variability (module), 71
medusa_directory (in module medusa.test), 72
Member (class in medusa.core), 63
Member (class in medusa.core.member), 61
members (medusa.core.Ensemble attribute), 62
members (medusa.core.ensemble.Ensemble attribute),

59
members (medusa.test.Ensemble attribute), 72
MISSING_ATTRIBUTE_DEFAULT (in module

medusa.core.ensemble), 59
MISSING_ATTRIBUTE_DEFAULT (in module

medusa.reconstruct.expand), 67
MISSING_ATTRIBUTE_DEFAULT (in module

medusa.test.test_ensemble), 70
MISSING_ATTRIBUTE_DEFAULT (in module

medusa.test.test_load_from_file), 71
MISSING_ATTRIBUTE_DEFAULT (in module

medusa.test.test_reconstruct), 71

O
optimize_ensemble() (in module

medusa.flux_analysis.flux_balance), 64

P
parent_attr_of_base_component() (in mod-

ule medusa.reconstruct.load_from_file), 70

R
REACTION_ATTRIBUTES (in module

medusa.core.ensemble), 59
REACTION_ATTRIBUTES (in module

medusa.reconstruct.expand), 67
REACTION_ATTRIBUTES (in module

medusa.test.test_ensemble), 70
REACTION_ATTRIBUTES (in module

medusa.test.test_load_from_file), 71
REACTION_ATTRIBUTES (in module

medusa.test.test_reconstruct), 71

S
set_state() (medusa.core.Ensemble method), 62
set_state() (medusa.core.ensemble.Ensemble

method), 60

80 Index

medusa Documentation, Release 0.2.0

set_state() (medusa.test.Ensemble method), 72

T
test_all_attributes_in_batch_load_model()

(in module medusa.test.test_load_from_file),
71

test_batch_load_vs_innate() (in module
medusa.test.test_load_from_file), 71

test_ensemble_creation() (in module
medusa.test.test_ensemble), 70

test_extract_member() (in module
medusa.test.test_ensemble), 70

test_fba_multiprocessing() (in module
medusa.test.test_flux_balance), 71

test_fba_random_sample() (in module
medusa.test.test_flux_balance), 71

test_fba_return_dims() (in module
medusa.test.test_flux_balance), 71

test_fba_single_return() (in module
medusa.test.test_flux_balance), 71

test_fba_specific_models() (in module
medusa.test.test_flux_balance), 71

test_fva_return_dims() (in module
medusa.test.test_variability), 71

test_iterative_gapfill_from_binary_phenotypes()
(in module medusa.test.test_reconstruct), 71

test_mixed_ensemble_creation() (in module
medusa.test.test_ensemble), 70

test_pickle() (in module
medusa.test.test_ensemble), 70

test_update_member_id() (in module
medusa.test.test_ensemble), 70

to_model() (medusa.core.Member method), 63
to_model() (medusa.core.member.Member method),

61
to_pickle() (medusa.core.Ensemble method), 62
to_pickle() (medusa.core.ensemble.Ensemble

method), 60
to_pickle() (medusa.test.Ensemble method), 72

V
validate() (in module medusa.reconstruct.expand),

69

Index 81

	Index
	Indices and tables
	Python Module Index
	Index

